More Images of HR 8799

HR 8799 system
One of the discovery images of the system obtained at the Keck II telescope using adaptive optics system and the NIRC2 Near-Infrared Imager. Image shows all four confirmed planets indicated as b, c, d and e in the labeled image. Planet "b" is a ~5 Jupiter-mass planet orbiting at about ~68 AU, while planets c, d, and e are ~7 Jupiter-mass companions orbiting the star at about 38, 24 and 14.5 AU. Credit: NRC-HIA, C. Marois & Keck Observatory

[/caption]

Late last year, astronomers using the Keck II telescope released the first direct image of a planetary system including four planets. These planets orbited the star HR 8799 and were taken in the J and L bandpasses which are in the near-infrared portion of the spectrum. Since then the team has collected new data using the same telescope, extending the spectral range into the mid-infrared portion of the spectra.

The new images are important to astronomers because this provides a more complete understanding of the distribution of radiation that the planets are emitting. This can be compared to models of planetary formation, allowing these young planets to act as a test bed. Previous comparison to models have suggested that these planets have cool, dusty atmospheres without the presence of methane or other common absorbing molecules.

The team hopes that the new observations will help distinguish between the various models that explain this deficiency of methane. Unfortunately, getting good observations in this portion of the spectra is challenging. In particular, at the Keck telescope, the design of the telescope itself makes observations especially challenging due to portions of the instrument themselves emitting in the infrared, masking the faint signals from the planet.

To bring out the planets, the team developed a new technique to help clean the images of the unwanted noise. They estimate that their new technique is nine times more efficient than previously used techniques. To do this, they moved the telescope slightly between images, allowing the patterns of interference to change between exposures, thereby making them more apparent and easier to remove.

When the results were analyzed and compared to models, the team found that they were in good agreement with predictions of planetary evolution for planets c and d. However, for planet b, the models predicted a planet with a radius that would be too small to account for the observed luminosity. The observations could be brought into agreement with the models by increasing the metallicity of the model.

With additional future observations, the team hopes to constrain these models and further investigate the atmospheres of these planets.

NOTE: I Emailed the authors of the paper to ask permission to reproduce the new image here, but have not gotten a reply. The one used above is the K and L band images from last year. To see the new ones, feel free to go to the paper directly.

Return of the Capsule

SpaceX's Dragon Spacecraft was placed on display just outside of Cape Canaveral Air Force Station at the Space & Missile History Center. Photo Credit: Jason Rhian

[/caption]

CAPE CANAVERAL Fla. – As Florida’s Space Coast braces for the end of the shuttle program this month, signs of life after shuttle are starting to emerge. Space Exploration Technologies (SpaceX) returned the Dragon Spacecraft that launched this past December to Cape Canaveral Air Force Station. The Dragon however, was not alone. Two more capsules, one a test article, the other a mock-up were on display at Kennedy Space Center’s press site, signaling the coming way of the future for human spaceflight.

The Dragon Spacecraft was on display outside of Cape Canaveral Air Force Station. Placed between SpaceX’s Launch Control Center (LCC) and the U.S. Air Force Space and Missile History Center, the Dragon’s scorched hull was displayed to remind Space Coast residents that the space program was not retiring along with the shuttles.

Spce Exploraton Technologies Vice-President of Communiatons, Bobby Block explains the reason the Dragon Spacecaft was returned to Cape Canaveral. Photo Credit: Jason Rhian

“A lot of people are sad that the shuttle program is ending, it has been such an integral part of the area for three decades that they have a right to feel this way,” said SpaceX’s Vice President of Communications, Bobby Block. “Just because the shuttles are retiring however, does not mean that the entire space program is ending – it’s not over – it is the ending of one program, but it also is the start of another.”

That sentiment was shared by Lockheed Martin who brought their Orion Multi-Purpose Crew Vehicle to sit near the iconic Countdown Clock, a mere 3.5 miles away from shuttle Atlantis out at Launch Complex 39A. At first glance the fact that the capsule was still chained to the back of a trailer appeared to suggest that its appearance was rushed but in fact it highlighted a campaign by Lockheed Martin to let the public view Orion.

In conjunction with the final launch of the shuttle program, Lockheed-Martin had the Orion MPCV on display at the Kennedy Space Center press site. Photo Credit: Jason Rhian

“We were taking the Orion to Kennedy Space Center so we took the opportunity to stop along the way,” said Lockheed Martin’s Communications Manager for the Orion Project Linda Singleton. “This way we could tell the public about the Orion Program, let them see the spacecraft first hand. We stopped at Tucson, Austin and Tallahassee and met with 20,000 people in person across the country and talked to them about Orion.”

Not to be outdone, the Boeing Company had a replica of its CST-100 Space Taxi – split down the middle allowing guests to get an up close and in-depth look at the capsule-concept that it is submitting, in collaboration with Bigelow Aerospace, as their entry for NASA’s Commercial Crew Development (CCDev) program. If chosen, it would be used to ferry astronauts to the International Space Station. Boeing also had a structural article on display nearby.

The interior of the mock up for the CST-100 highlights the relatively simple design planned for the spacecraft. Photo Credit: Jason Rhian

“The reason we selected a capsule is that it is a simple system, we’ve been flown since John Glenn did his first flight on Mercury,” said Boeing’s Vice-President and Program Manager of Commercial Crew Programs John Elbon. “The purpose of this transportation system is just to take passengers to the space station, so our design is focused on that mission.”

Boeing had not only a mock up, but a structural test article of the CST-100 on display as well. Photo Credit: Jason Rhian

The numerous capsules on display as well as other “Space-Taxi” systems such as the one proposed by Sierra Nevada highlight efforts to shrink the human space flight gap that will start on July 21, when Atlantis conducts its final wheel stop. With the number of spacecraft that have flown, are being tested or just now emerging off the drawing boards it is possible that the U.S. might have a variety of craft for a wide range of missions. For now however, NASA will have to rely on Russia’s Soyuz Spacecraft.

Bringing You There: Atlantis Roars into Orbit One Final Time

Videographers David Gonzales, Kurt Johnson and Mike Deep filmed the final launch of the Space Shuttle from the Kennedy Space Center Press Site.  The team used multiple cameras along with a high definition stereo audio recording device to capture the sights and sounds as Atlantis thundered into orbit. The goal was to provide the closest launch experience for the viewer without actually being there.

A Space Shuttle launch is a spectacle that will never again be seen.  The sequence begins with a tight shot of the pad in the final seconds of the count.  As the 3 Space Shuttle Main Engines ignite they flash water from the sound suppression water system into steam, sending a plume billowing away.   The entire stack rocks a couple of feet before settling back vertical. The Solid Rocket boosters ignite, launching out a second plume and lifting the 4.5 million pound stack off the ground. Spectators erupt into cheers and the shutters of thousands of press cameras click away.

Continue reading “Bringing You There: Atlantis Roars into Orbit One Final Time”

Where In The Universe Challenge #150

It’s time for another Where In The Universe Challenge! Name where in the Universe this image was taken and give yourself extra points if you can name the telescope or spacecraft responsible for the image. Post your guesses in the comments section, and check back on later at this same post to find the answer. To make this challenge fun for everyone, please don’t include links or extensive explanations with your answer. Good luck!

And you can now find the answer to the previous WITU Challenge back at the original post.

UPDATE: The answer is now posted below!

This image was taken by the Hubble Space Telescope in December 2004, and it provides a detailed look at the tattered remains of a supernova explosion known as Cassiopeia A (Cas A). It is the youngest known remnant from a supernova explosion in the Milky Way. The image is a composite made from 18 separate images using Hubble’s Advanced Camera for Surveys (ACS). See this link on the HubbleSite for more info.

Turning On A Supermassive Black Hole

A new study combining data from ESO’s Very Large Telescope and ESA’s XMM-Newton X-ray space observatory has turned up a surprise. Most of the huge black holes in the centres of galaxies in the past 11 billion years were not turned on by mergers between galaxies, as had been previously thought. Credit: CFHT/IAP/Terapix/CNRS/ESO

[/caption]

ESO’s Very Large Telescope and ESA’s XMM-Newton X-ray Space Observatory has just opened our eyes once again. While we thought that the massive black holes that lurk at the center of large galaxies (and they always lurk, don’t they? they never just lay about, lallygag, or loiter…) for the last 11 billion years were turned on by mergers, we’re finding out it just might not be so.

For all astronomers, we’re aware that galactic structure involves a mostly quiescent central black hole. But as we reach further out into the Universe, we’re finding that early, brighter galaxies have a middle monster – one which appears to be noshing on a material that emits intense radiation. So if a galaxy merger isn’t responsible, then where does the material originate to ignite a quiet black hole into an active galactic nucleus? Maybe the omni-present dark matter…

Viola Allevato (Max-Planck-Institut für Plasmaphysik; Excellence Cluster Universe, Garching, Germany) and an international team of scientists from the COSMOS collaboration have studied 600 active galaxies in an intensively mapped region called the COSMOS field. Spanning an area consisting of about five degrees of celestial real estate in the constellation of Sextans, the COSMOS field has been richly observed by multiple telescopes at multiple wavelengths. This gives astronomers a great “picture” from which to draw data.

What they found was pretty much what they had expected – most of the active galaxies in the past 11 billion years were only moderately bright. But what they weren’t prepared to understand is why the majority of these more common, less bright active galaxies weren’t triggered by mergers. It’s a problematic situation that had previously been tackled by the Hubble Space Telescope, but COSMOS is looking back even further in time and with greater detail – a three-dimensional map showing where the active galaxies reside. “It took more than five years, but we were able to provide one of the largest and most complete inventories of active galaxies in the X-ray sky,” said Marcella Brusa, one of the authors of the study.

These new charts could help further our understanding of distribution as the universe aged and further refine modeling techniques. The new information also points to active galactic nuclei being hosted in large galaxies with abundances of dark matter… against popular theory. “These new results give us a new insight into how supermassive black holes start their meals,” said Viola Allevato, who is lead author on the new paper. “They indicate that black holes are usually fed by processes within the galaxy itself, such as disc instabilities and starbursts, as opposed to galaxy collisions.”

Alexis Finoguenov, who supervised the work, concludes: “Even in the distant past, up to almost 11 billion years ago, galaxy collisions can only account for a small percentage of the moderately bright active galaxies. At that time galaxies were closer together so mergers were expected to be more frequent than in the more recent past, so the new results are all the more surprising.”

Original News Source: ESO Press Release.

Burned Out Stars Do A Deadly Last Dance

Two white dwarfs have been discovered on the brink of a merger. In just 900,000 years, material will start to stream from one star to the other (as shown in this artist's conception), beginning the process that may end with a spectacular supernova explosion. Watching these stars fall in will allow astronomers to test Einstein's general theory of relativity as well as the origin of a special class of supernovae. Credit: David A. Aguilar (CfA)

[/caption]

“Well, I don’t know, but I’ve been told… You never slow down, you never grow old.” Well, Tom Petty might not ever grow old, but stars do. In this case it’s a pair white dwarf stars and they’re locked in a death dance that has them spiraling around each other in just 13 minutes. Astronomers estimated that in about 900,000 years the pair will merge… and what a party that will be!

Traveling in an orbit that’s currently carrying them at 370 miles per second (600 km/s), these two burnt-out stellar cores are heading towards a supernova ending. Right now the brighter of the pair is about the size of Neptune and carries about one quarter of our Sun’s mass. Its companion contains twice as much mass and is about the size of Earth. What’s peculiar is the incredible speed at which they are converging.

“I nearly fell out of my chair at the telescope when I saw one star change its speed by a staggering 750 miles per second in just a few minutes,” said Smithsonian astronomer Warren Brown, lead author of the paper reporting the find.

Using the MMT telescope at the Whipple Observatory on Mt. Hopkins, Arizona, researchers have been looking for just such eclectic white dwarf pairings. Because of their close proximity, they can only be separated spectroscopically and their relative motions then determined. Fortunately, this unusual set are eclipsing, doing their two-step at a very predictable rate. “If there were aliens living on a planet around this star system, they would see one of their two suns disappear every 6 minutes – a fantastic light show.” said Smithsonian astronomer and co-author Mukremin Kilic.

What’s really cool about this observing project is its implications as related to Einstein’s theories. Their movements should create wrinkles in the fabric space-time. These gravitational waves pull away at the energy – allowing the pair to get closer at each pass and their orbits to accelerate.

“Though we have not yet directly measured gravitational waves with modern instruments, we can test their existence by measuring the change in the separation of these two stars,” said co-author J. J. Hermes, a graduate student at the University of Texas at Austin. “Because they don’t seem to be exchanging mass, this system is an exceptionally clean laboratory to perform such a test.”

Just as soon as the pair emerges from behind the Sun, observing will begin again. Some models predict merging white dwarf pairs of this type could be a rare class of unusually faint stellar explosions called underluminous supernovae – or just the source of many other kinds of supernovae. “If these systems are responsible for underluminous supernovae, we will detect these binary white dwarf systems with the same frequency that we see the supernovae. Our survey isn’t complete, but so far, the numbers agree,” said Brown.

What can we say besides, “Last dance with Mary Jane… One more time to kill the pain… I feel summer creepin’ in.”

Original Story Source: Harvard-Smithsonian Center for Astrophysics.

Share a Meal With Astronauts in Space on July 14

NASA's All American Meal the astronauts will eat on July 14, 2011. Credit: NASA

[/caption]

I’m just making out my shopping list for going to the grocery store tomorrow, and it includes everything I need to share a virtual dinner with the astronauts in space on Thursday, July 14. And no, unfortunately, I’m not launching to the ISS to join them. Food scientists at NASA’s Johnson Space Center in Houston thought it would be fun to give the crew an “All American Meal” — a typical American meal for the final mission of the shuttle and invite the public to join in by preparing the same food. Whatever you prepare it will be more aesthetically pleasing than the rehydrated food in plastic bags the shuttle and ISS crews will eat. Here’s the menu:

An appetizer of brie cheese, crackers and sausage; your choice of grilled chicken (which the shuttle crew will eat) or beef brisket (which will be enjoyed by the ISS crew), Southwestern corn and baked beans. The ISS crew will have beef brisket instead of chicken, but will enjoy the same side dishes as the shuttle crew. Desert for both crews consists of apple pie. The meal concludes with the quintessential American dessert, apple pie.

“Since the mission is in July, we thought it would be fun to have a typical summer meal often enjoyed in our backyards with friends and family,” said Michele Perchonok, NASA food scientist and manager of the shuttle food system.

For the special space recipes or “formulations” as they are called by NASA food scientists, plus more information, video and imagery, visit this NASA webpage.

The crackers, brie, sausage and apple pie are commercial off-the-shelf products repackaged for spaceflight. NASA food scientists prepared the chicken, brisket, corn and beans in a laboratory at Johnson before the mission.

NASA didn’t specify what time the astronauts will be eating their All American Meal, so you can eat at any time during the day and know you’re eating the same thing as the astronauts in space did. Well, pretty close to the same thing anyway. Hopefully those of us sitting on Earth don’t have to rehydrate our food and eat out of plastic bags.

Historic Images of Final Spacewalk of Shuttle Era

With space shuttle Atlantis docked to the space station for the STS-135 mission, the final EVA of the shuttle era took place on July 12, 2011. Here, Ron Garan is secured on a restraint on the space station remote manipulator system's robotic arm or Canadarm2, carrying a faulty pump module will be retuned to Earth by the shuttle. Credit: NASA

[/caption]

It’s the end of an era: the final spacewalk during the space shuttle era was conducted by astronauts on July 12, 2011 during the final shuttle mission, STS-135. This is the 160th spacewalk supporting assembly and maintenance of the space station and the 249th EVA conducted by U.S. astronauts. The two spacwalkers were actually from the International Space Station crew, Expedition 28’s Mike Fossum and Ron Garan, but were assisted by the shuttle crew. Shuttle Pilot Doug Hurley and Mission Specialist Sandy Magnus operated operate the station’s 58-foot-long Canadarm 2 to maneuver the spacewalkers around during the spacewalk.

Here are more images from the EVA:


Astronaut Ron Garan egresses the Quest airlock on the International Space Station as he prepares to join crewmate Mike Fossum for the spacewalk. Credit: NASA

Mike Fossum works outside the ISS during the six and a half hour spacewalk, the final of the shuttle era. Credit: NASA.
No, this isn't a picture of an astronaut carrying a freezer outside the space station. With his feet secured on a restraint on the space station remote manipulator system's robotic arm Canadarm2, Mike Fossum holds the Robotics Refueling Mission payload, an experiment which will test in-flight refueling with the DEXTRE robot. Fossum and Ron Garan installed the experiment during the July 12 EVA. Credit: NASA
Suspended in a very unique position on the end of Canadarm2, Mike Fossum takes a picture during a July 12 spacewalk. Credit: NASA
Space shuttle Atlantis makes a cameo in this image as Mike Fossum takes a picture during the spacewalk while on a foot restraint on the Canadarm 2. Credit: NASA
Ron Garan during the spacewalk: "I almost had 1 foot in day and 1 foot in night Orbital sunset," said Garan via Twitter of this picture. Credit: NASA
A view of the Cupola on the ISS, and if you look closely, you can see faces of several of the Atlantis STS-135 and Expediton 28 crewmembers looking out the windows. Credit: NASA
Another view of Mike Fossum during the spacewalk. Credit: NASA
A close-up view of Mike Fossum during the final EVA of the shuttle era. Credit: NASA
With his feet secured on a restraint on Canadarm2, Mike Fossum holds the Robotics Refueling Mission payload. The failed pump module is with DEXTRE in the upper left corner of the photo. The blue color on the space station module is a reflection from the blue of planet Earth. Credit: NASA
"Knocking on the door to come back in from space after yesterday's spacewalk," said Ron Garan via Twitter. Credit: NASA
Following the six-hour, 31-minute EVA, spacewalkers Ron Garan (top left) and Mike Fossum (top right), pose in the ISS’s Quest airlock with Chris Ferguson, STS-135 commander, Doug Hurley, pilot, and Rex Walheim, mission specialist. Credit: NASA
Here’s how astronauts train for their EVAs, in the Neutral Buoyancy Laboratory (NBL) near NASA's Johnson Space Center. Here astronauts Rex Walheim and Sandy Magnus (mostly obscured), are raised from the waters of the N as a spacewalk training session comes to a close. Divers were in the water to assist Magnus and Walheim in their rehearsal. Credit: NASA

For larger versions of any of these images, and to see more images from the STS-135 mission, see NASA’s Human Spaceflight website’s mission gallery.

MAXI Peers Into Black Hole Binaries

X-ray all-sky image obtained by MAXI's first 10-month observation Bright X-ray sources (mainly binaries comprising neutron stars and black holes) exist in large numbers around the Galactic Center (in the direction of Sagittarius) and along the Galactic Plane (Milky Way) and change from day to day. Colors indicate the "hardness" of X-ray spectrum. More than 200 X-ray sources including weak ones have been identified. Credit: JAXA

[/caption]

The Monitor of All-sky X-ray Image, or MAXI for short, spends its time aboard the ISS conducting a full sky survey every 92 minutes. Its sole purpose is to monitor X-ray source activity and report. Unlike stars seen in visible light, X-ray sources aren’t evenly distributed and can exhibit some highly unusual behavior. What causes these erratic moments? Read on…

“Most visible stars shine with energies generated by nuclear fusion in their cores. In these stars, if the energy generated in their core increases more than usual, the whole object expands and eventually lowers the core temperature. In this way, negative feedback is activated to stabilize the nuclear reaction. For this reason, these stars shine very stably for most of their lifetime.” says Nobuyuki Kawai of the Tokoyo Institute of Technology. “On the other hand, the energy source of most intense X-ray sources is gravitational energy released when the gas surrounding extremely compact bodies like black holes and neutron stars is accreted onto them. The normal stars’ stabilizing mechanism does not work in this process, and accordingly, X-ray intensity fluctuates in response to changes in the supply of gas from the surrounding area.”

This means MAXI needs to keep a close watch on both known and unknown X-ray sources for activity. Catching it as it happens allows an alert to be posted to other observatories for monitoring and study. Right now the focus has been on MAXI’s 18 month study of black hole binaries – the most famous of which is Cygnus X-1. It is well-known this famous source shines brilliantly in the X-ray spectrum, but it switches between a “hard” and “soft” state. These periods of high and low energy may be directly related to the density of gas which surrounds it.

“We can get a clue to estimate the mass of a black hole by examining the X-ray intensity and radiation spectrum in the soft state. As a result of analysis of the motion of the companion star rotating the center of gravity of the binary system, we found that Cygnus X-1 is a remarkably smaller object than normal stars, with an X-ray source mass about 10 times the solar mass but which emits hardly any visible light.” says Professor Kawai. “If applying star theory, such an object must be a black hole.”

Right now astronomers are studying gas properties and estimate there are about 20 binary X-ray sources other than Cygnus X-1. Most of these black hole binaries are considered to be “X-ray nova” – showing activity anywhere from every few years to only once in the four decades we’ve been studying them in this light. With the help of MAXI’s sensitive all-sky monitoring, researchers now stand a chance of being able to monitor activity from beginning to end. Has it been successful? You bet. When black hole binary, XTE J1752-223, was discovered by the routine patrol of RXTE, MAXI also detected the emergence of this new X-ray nova and was able to observe all the activities until it disappeared in April 2010. On September 25, 2010 MAXI and the Swift satellite discovered black hole binary MAXI J1659-152 almost simultaneously allowing it to be observed by researchers and amateur astronomers around the world.

“In addition to these black hole binaries, MAXI has achieved many interesting observations including: detection of the largest flare from active galactic nuclei in X-ray observation history; discovery of a new binary X-ray pulsar, MAXI J1409-619; and detection of a number of intense star flares.” says Kawai. “As long as the ISS is operating, we will use MAXI to monitor the X-ray sky, which changes restlessly and violently.”

Original Story Source: Japan Aerospace Exploration Agency.

New Planet Discovered In Trinary Star System

A planet 6 times the mass of Earth orbits around the star Gliese 667 C, which belongs to a triple system. Credit: ESO

[/caption]

Until recently, astronomers were highly skeptical of whether or not planets should be possible in multiple star systems. It was expected that the constantly varying gravitational force would eventually tug the planet out of orbit. But despite doubts, astronomers have found several planets in just such star systems. Recently, astronomers announced another, this time in the trinary star HD 132563.

The detection of the new planet came as part of a larger study on the trinary star system spanning 10 years. The two main stars that comprise the system are both similar to the Sun in mass, although somewhat less prevalent in metals, and orbit each other at a distance of around 400 AU. The main star, HD 132563A is also itself, a binary. This fact was not previously recognized and also reported by the team, led by Silvano Desidera from the Astronomical Observatory in Padova, Italy.

The newly discovered planet orbits the secondary star in the system, HD 132563B. As with the binary component of the main star, the new planet was discovered spectroscopically. The planet is at least 1.3 times the mass of Jupiter, with an average distance from its parent star of 2.6 AU, and an moderately high eccentricity of 0.22.

The team also attempted to image the planet directly using adaptive optics from the Italian Telescopio Nazionale Galileo. While there was a hint in the glare of the star that may have been the planet in question, the team could not rule out that the detection was not an instrumental effect.

With the discovery of this new planet, the total number of discovered planets in multiple star systems lies at eight. while this is rather small numbers from which to draw firm conclusions, it appears that planets can be commonly found orbiting the more remote members of trinary star systems for good periods of time. On the shorter end, the stellar system is anticipated to be 1-3 billion years in aged, based on the amount of stellar activity and amount of lithium present in the star’s atmosphere (which decreases with time). However, fitting of the mass and luminosity onto isochrones suggest the stars may be as much as 5 billion years in age. In either situation, the planetary system is dynamically stable.

Also based on these eight systems, the team also suggests that planets existing around such far removed members of a multiple star system may be as common as planets around wide binaries, or even single stars.