JWST Pierces Through a Thick Nebula to Reveal Newly Forming Binary Stars

The NASA/ESA/CSA James Webb Space Telescope has captured a high-resolution image of a tightly bound pair of actively forming binary stars, known as Herbig-Haro 46/47, in near-infrared light. NASA, ESA, CSA, J. DePasquale (STScI), CC BY-SA 3.0 IGO
The NASA/ESA/CSA James Webb Space Telescope has captured a high-resolution image of a tightly bound pair of actively forming binary stars, known as Herbig-Haro 46/47, in near-infrared light. NASA, ESA, CSA, J. DePasquale (STScI), CC BY-SA 3.0 IGO

In 1985, the physicist Heinz Pagels wrote that star birth was a “veiled and secret event.” That’s because the stellar crêches hide the action. But, ever since the advent of infrared astronomy, astronomers have been able to lift that veil. In particular, the Hubble Space Telescope has studied these systems and now, the Webb Telescope (JWST) gives regular detailed views of stellar nurseries.

Continue reading “JWST Pierces Through a Thick Nebula to Reveal Newly Forming Binary Stars”

If Rogue Planets are Everywhere, How Could We Explore Them?

This artist’s impression shows an example of a rogue planet with the Rho Ophiuchi cloud complex visible in the background. Rogue planets have masses comparable to those of the planets in our Solar System but do not orbit a star, instead roaming freely on their own. Image Credit: ESO/M. Kornmesser/S. Guisard

At one time, astronomers believed that the planets formed in their current orbits, which remained stable over time. But more recent observations, theory, and calculations have shown that planetary systems are subject to shake-ups and change. Periodically, planets are kicked out of their star systems to become “rogue planets,” bodies that are no longer gravitationally bound to any star and are adrift in the interstellar medium (ISM). Some of these planets may be gas giants with tightly bound icy moons orbiting them, which they could bring with them into the ISM.

Like Jupiter, Saturn, Uranus, and Neptune, these satellites could have warm water interiors that might support life. Other research has indicated that rocky planets with plenty of water on their surfaces could also support life through a combination of geological activity and the decay of radionuclides. According to a recent paper by an international team of astronomers, there could be hundreds of rogue planets in our cosmic neighborhood. Based on their first-ever feasibility analysis, they also indicate that deep space missions could explore these unbound objects more easily than planets still bound to their stars.

Continue reading “If Rogue Planets are Everywhere, How Could We Explore Them?”

How Did Supermassive Black Holes Grow So Quickly, So Early?

An international team of astronomers using archival data from the NASA/ESA Hubble Space Telescope and other space- and ground-based observatories have discovered a unique object in the distant, early Universe that is a crucial link between young star-forming galaxies and the earliest supermassive black holes. Current theories predict that supermassive black holes begin their lives in the dust-shrouded cores of vigorously star-forming “starburst” galaxies.
An international team of astronomers using archival data from the NASA/ESA Hubble Space Telescope and other space- and ground-based observatories have discovered a unique object in the distant, early Universe that is a crucial link between young star-forming galaxies and the earliest supermassive black holes. Current theories predict that supermassive black holes begin their lives in the dust-shrouded cores of vigorously star-forming “starburst” galaxies.

Supermassive black holes haunt the cores of many galaxies. Yet for all we know about black holes (not nearly enough!), the big ones remain a mystery, particularly when they began forming. Interestingly, astronomers see them in the early epochs of cosmic history. That raises the question: how did they get so big when the Universe was still just a baby?

Continue reading “How Did Supermassive Black Holes Grow So Quickly, So Early?”

How Will We the Find First Signs of Alien Life — and When?

Illustration: Assortment of exoplanets
Astronomers have detected thousands of planets, including dozens that are potentially habitable. To winnow them down, they need to understand their atmospheres. AI and machine learning can help. (NASA Illustration)

When will we find evidence for life beyond Earth? And where will that evidence be found? University of Arizona astronomer Chris Impey, the author of a book called “Worlds Without End,” is betting that the first evidence will come to light within the next decade or so.

But don’t expect to see little green men or pointy-eared Vulcans. And don’t expect to get radio signals from a far-off planetary system, as depicted in the 1992 movie “Contact.”

Instead, Impey expects that NASA’s James Webb Space Telescope — or one of the giant Earth-based telescopes that’s gearing up for observations — will detect the spectroscopic signature of biological activity in the atmosphere of a planet that’s light-years away from us.

“Spectroscopic data is not as appealing to the general public,” Impey admits in the latest episode of the Fiction Science podcast. “People like pictures, and so spectroscopy never gets its fair due in the general talk about astronomy or science, because it’s slightly more esoteric. But it is the tool of choice here.”

Continue reading “How Will We the Find First Signs of Alien Life — and When?”

Clumps Around a Young Star Could Eventually Turn Into Planets Like Jupiter

The young star V960 Mon and its surrounding dusty material, seen by SPHERE (left) and ALMA (right). Credit: ESO/ALMA (ESO/NAOJ/NRAO)/Weber et al

From the dust, we rise. Vortices within the disks of young stars bring forth planets that coalesce into worlds. At least that’s our understanding of planetary evolution, and new images from the Atacama Large Millimeter/submillimeter Array (ALMA) and the Very Large Telescope’s Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) further support this.

Continue reading “Clumps Around a Young Star Could Eventually Turn Into Planets Like Jupiter”

Have We Seen the First Glimpse of Supermassive Dark Stars?

Three dark star candidates, JADES-GS-z13-0 (top), JADES-GS-z12-0 (middle), and JADES-GS-z11-0 (bottom) were originally identified as galaxies by the JWST Advanced Deep Extragalactic Survey (JADES) team. Recently, a team of researchers have hypothesized these candidates could be “dark stars,” which are theoretical objects far more massive and brighter than our sun, and allegedly powered by demolishing particles of dark matter. (Credit: NASA/European Space Agency)

A recent study published in the Proceedings of the National Academy of Sciences (PNAS) examines what are known as dark stars, which are estimated to be much larger than our Sun, are hypothesized to have existed in the early universe, and are allegedly powered by the demolition of dark matter particles. This study was conducted using spectroscopic analysis from NASA’s James Webb Space Telescope (JWST), and more specifically, the JWST Advanced Deep Extragalactic Survey (JADES), and holds the potential to help astronomers better understand dark stars and the purpose of dark matter, the latter of which continues to be an enigma for the scientific community, as well as how it could have contributed to the early universe.

Continue reading “Have We Seen the First Glimpse of Supermassive Dark Stars?”

Astronomers Find a Rare “Einstein Cross”

A great example of an Einstein Cross, as seen by Hubble Space Telescope. A "galaxy" with five nuclei is really one galaxy surrounded by a mirage of four images of a distant quasar. The galaxy lies 400 million light years away; the quasar about 8 billion. Credit: NASA/ESA/Hubble
A great example of an Einstein Cross, as seen by Hubble Space Telescope. A "galaxy" with five nuclei is really one galaxy surrounded by a mirage of four images of a distant quasar. The galaxy lies 400 million light years away; the quasar about 8 billion. Credit: NASA/ESA/Hubble

Gravitational lensing is one of astronomy’s great wonders: a natural lens that magnifies the distant universe. Sometimes a lensing system takes the shape of a so-called “Einstein Cross”. Those are rare and amazingly useful ways to study objects far away in space and time.

Continue reading “Astronomers Find a Rare “Einstein Cross””

NASA and DARPA Award Contract for a Nuclear Engine to Lockheed Martin

Artist's concept of a Lockheed design for a DRACO nuclear-powered demonstration spacecraft. Credit: Lockheed Martin.

NASA plans to send astronauts to Mars in the coming decade. This presents many challenges, not the least of which is the distance involved and the resulting health risks. To this end, they are investigating and investing in many technologies, ranging from life support and radiation protection to nuclear power and propulsion elements. A particularly promising technology is Nuclear-Thermal Propulsion (NTP), which has the potential to reduce transit times to Mars significantly. Instead of the usual one-way transit period of six to nine months, a working NTP system could reduce the travel time to between 100 and 45 days!

In January of this year, NASA and the Defense Advanced Research Projects Agency (DARPA) announced that they were launching an interagency agreement to develop a nuclear-thermal propulsion (NTP) system – known as the Demonstration Rocket for Agile Cislunar Operations (DRACO). Just yesterday, DARPA announced that it had finalized an agreement with Lockheed Martin to design and build a prototype NTR system – the Experimental NTR Vehicle (X-NTRV) – that will be sent to space for testing by 2027.

Continue reading “NASA and DARPA Award Contract for a Nuclear Engine to Lockheed Martin”

Senseless Vandalism Damages Canadian Observatory

Damage from vandalism at the Hamilton Centre, an observatory for amateur astronomers, part of the Royal Astronomical Society of Canada. Image courtesy Victor Abraham/ Hamilton Centre.

The Royal Astronomical Society of Canada’s observatory in Hamilton, Ontario was vandalized earlier this month, with at least $100,000 in damage to equipment and facilities.

Security video shows two people using a truck to repeatedly ram into two buildings – the observatory and a meeting center — knocking down exterior walls on both buildings and damaging telescopes and other equipment inside. Nothing was stolen, but damaged for no apparent reason.

“It appears to be a failed robbery turned utter vandalism,” said the group’s president Andy Blanchard. “It looked like they wanted to destroy everything.”

Continue reading “Senseless Vandalism Damages Canadian Observatory”

Olympus Could Have Been a Giant Volcanic Island in an Ancient Martian Ocean

Olympus Mons, captured by the ESA's Mars Express mission from orbit. Credit: ESA/DLR/FUBerlin/AndreaLuck

Olympus Mons, located at the northwest edge of the Tharsis Montes region on Mars, was appropriately named. Based on readings obtained by the Mars Orbiter Laser Altimeter (MOLA), an instrument aboard NASA’s Mars Global Surveyor (MGS), this mountain is the tallest in the Solar System, standing 21.9 km (13.6 mi) tall – about two and a half times the height of Mount Everest (8.85 km; 5.5 mi). According to current estimates, this extinct shield volcano formed during Mars’ Hesperian Period (ca. 3.7 to 3 billion years ago), which was characterized by widespread volcanic activity and catastrophic flooding.

This coincides with a period when Mars had a denser atmosphere, a warmer environment, and flowing water on its surface. This included a global ocean that spanned much of the northern hemisphere, known today as the Northern Lowlands, encompassing Olympus Mons. According to a recent study led by researchers from the Centre National de Recherches Scientifique (CNRS), features found on the slopes of Olympus Mons indicate that it could have been a massive volcanic island where volcanic eruptions flowed into the ocean, similar to ones found on Earth.

Continue reading “Olympus Could Have Been a Giant Volcanic Island in an Ancient Martian Ocean”