Atlantis Goes Vertical for the Last Time

Credit: Ken Kremer

[/caption]

KENNEDY SPACE CENTER – For the last time in history, Atlantis and the shuttle program have literally gone vertical. Following the rollover of Atlantis into the Vehicle Assembly Building (VAB), the orbiter was attached to a massive crane and then hoisted and mated to the External Tank and twin Solid Rocket boosters that will power her 25th and last climb to orbit.

Myself and a small band of lucky photo journalists were privileged to witness this milestone on the way to blastoff of the STS-135 mission, the last one of the three decade long shuttle era. Check out a selection of my images in this photo album for Universe Today readers. I’ll post a few now and more later as Atlantis prepares to rollout to Launch Pad 39 A.

The STS-135 mission remains on target for liftoff on July 8 at about 11:40 a.m. EDT on a 12 day flight to deliver critical parts, science experiments, gear, crew supplies and provisions to the International Space Station (ISS).

Credit: Ken Kremer
Credit: Ken Kremer
Credit: Ken Kremer
Credit: Ken Kremer
Credit: Ken Kremer
Credit: Ken Kremer
Credit: Ken Kremer

Read my prior story about the Final Shuttle mission, STS-135, here:
Atlantis Rolls to Vehicle Assembly Building with Final Space Shuttle Crew for July 8 Blastoff

Voyager 1 Measures Magnetic Mayhem

Artist's Conception of Voyager - Credit: NASA

[/caption]

When Voyager 1 passed into the heliosheath in 2004, it became the first man-made object to explore the remote edge of the Sun’s magnetic influence. Launched by NASA on September 5, 1977, the probe was designed to study the outer Solar System and eventually interstellar space. One of its missions was to look for the heliopause – the boundary at which the solar wind transitions into the interstellar medium. What it found was mayhem…

According to NASA, Voyager 1 has crossed into an area where the velocity of the hot ionized gas, or plasma, emanating directly outward from the sun has slowed to zero. Scientists suspect the solar wind has been turned sideways by the pressure from the interstellar wind in the region between stars. “The solar wind has turned the corner,” said Ed Stone, Voyager project scientist based at the California Institute of Technology in Pasadena, Calif. “Voyager 1 is getting close to interstellar space.”

Now it has entered the heliosheath, an area ranging from 1.5 to 15 billion kilometers thick (930 million to 9.3 billion miles) and starting roughly 14 billion km (8.7 billion mi) from the Sun. But there’s nothing quiet here. This is the area where outgoing flows of solar wind begin to be repelled by interstellar particles and magnetic fields pushing towards the solar system. While passing through the heliosheath, Voyager 1 experienced many sudden and drastic changes in the surrounding magnetic field driven by structures called current sheets.

Illustration Courtesy of NASA

The team of L. F. Burlaga: Geospace Physics Laboratory, NASA Goddard Space Flight Center and N. F. Ness of the Institute for Astrophysics and Computational Sciences have been studying the ongoing results sent back by Voyager and have come to a new conclusion – there are three distinct types of current sheets.

“The structures, appearing as proton boundary layers (PBLs), magnetic holes or humps, or sector boundaries, were identified by characteristic fluctuations in either magnetic field strength or direction as the spacecraft crossed nearly 500 million km (310 million mi) of heliosheath in 2009. PBLs are defined by a rapid jump in magnetic field strength, with one observed event resulting in a doubling of the field strength in just half an hour.” said the team. “Passing through a sector boundary led to a sudden change in direction of the magnetic field. Magnetic holes saw the field strength drop to near zero before returning to the original background strength. Magnetic humps consisted of a sudden spike in strength and then a return to initial levels.”

But this isn’t the first time the Voyager has returned zero readings. In December 2004 the intrepid probe broke the barrier of the termination shock and data from Voyager 1’s Low-Energy Charged Particle Instrument was used to deduce the solar wind’s velocity. When the speed of the particles matched the speed of the spacecraft, scientists knew they had a null number on their records. “When I realized that we were getting solid zeroes, I was amazed,” said Rob Decker, a Voyager Low-Energy Charged Particle Instrument co-investigator and senior staff scientist at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md. “Here was Voyager, a spacecraft that has been a workhorse for 33 years, showing us something completely new again.”

And new is what we need to continue our understanding of what lay at the furthest reaches of our now explorable space. Says Burlaga, “The firsthand detections made by Voyager 1 are likely to be extremely important for researchers trying to decide between current leading theories for the source and structure of current sheets.”

Story source: Journal of Geophysical Research – Space Physics.

And The Moon Is Eclipsed By The Earth

Total lunar eclipse on December 21, 2010/ Credit: Jason Major

 

[/caption]

On June 15 there will be a total lunar eclipse visible from Australia, Indonesia, southern Japan, India, a large area of Asia, Africa, Europe and the eastern part of South America. This is expected to be one of the darkest eclipses ever (with a magnitude of 1.7), second only to the July 2000 eclipse.

Sadly it won’t be visible to viewers in North America, but much of the rest of the world should be treated to a wonderful show as the Moon slips into Earth’s shadow. Gradually growing darker from its western limb inwards, the Moon then gains a bluish cast which transitions to orange then deep red as it moves into light passing through the edge of Earth’s atmosphere (the same as what makes the colors of a sunset) and then eventually going almost completely dark before the process then reverses itself from the opposite side.

 

Visibility map for June 15 lunar eclipse

The entire eclipse will last 5 hours and 39 minutes, with a totality duration of 1 hour and 40 minutes. It will begin at 17:23 UT.

Viewers in Australia and eastern Asia will see the eclipse begin as the Moon is setting while those in Europe and South America will see it as the Moon is rising. Only locations in India, eastern Africa, the Middle East and western Asia will experience the entire eclipse.

This is the first of two total lunar eclipses in 2011; the next will take place on December 10.

I saw my first total lunar eclipse last December, which took place on the night of the winter solstice (December 21). It really was an amazing event to watch… in totality the Moon was colored a deep coppery red and really just seemed to be suspended among the stars – it felt like you could just reach up and pluck it from the sky! If you are in any of the areas where this next one is visible I encourage you to check it out for yourself!

Read more about lunar eclipses on MrEclipse.com.

Image: Jason Major

Twisted Ring Of Gas Orbits Galactic Center

A Herschel PACS (Photodetector Array Camera and Spectrometer) image of the center of the Milky Way. The dark line of cool gas is thought to be an elliptical ring surrounding the galactic center. The galaxy’s central supermassive black hole Sagittarius A* (Sgr A*) is labelled. The differential velocity of clouds in the ring may result from interaction with Sgr A*. Credit: ESA/Herschel/NASA/Molinari et al.

[/caption]

The Herschel Space Observatory scanned the center of the galaxy in far-infrared and found a cool (in all senses of the word) twisting ring of rapidly orbiting gas clouds. The ring is estimated to have dimensions of 100 parsecs by 60 parsecs (or 326 by 196 light years) – with a composite mass of 30 million solar masses.

The ring is proposed to oscillate twice about the galactic mid-plane for each orbit it makes of the galactic center – giving it the apparent shape of an infinite symbol when viewed from the side.

The research team speculate that the ring may be conforming to the shape of a standing wave – perhaps caused by the spin of the central galactic bulge and the lateral movement of gas across the galaxy’s large central bar. The researchers suggest that the combination of these forces may produce some kind of gravitational ‘sloshing’ effect, which would account for the unusual movement of the ring.

The estimated shape of the 100 by 60 parsec ring. Note the oscillating shape from a lateral perspective – and from above, note the ring encircles the supermassive black hole Sagittarius A*, but the black hole is not at its center. Credit: Molinari et al.

Although the ring is estimated to have an average orbital velocity of 10 to 20 kilometers a second, an area of dense cloud coming in close to the galaxy’s central supermassive black hole, Sagittarius A*, was clocked at 50 kilometers a second – perhaps due to its close proximity to Sagittarius A*.

However, the researchers also estimate that Sagittarius A* is well off-centre of the gas ring. Thus, the movement of the ring is dominated by the dynamics of the galactic bulge – rather than Sagittarius A*, which would only exert a significant gravitational influence within a few parsecs of itself.

Further reading: Molinari et al A 100 parsec elliptical and twisted ring of cold and dense molecular clouds revealed by Herschel around the galactic center.

Copenhagen Suborbitals Upcoming Launch Attempt in June

Kristian Von Bengtson checks the cockpit before the launch dummy is loaded. Photo credit: Bo Tornvig, Copenhagen Suborbitals.

[/caption]

Copenhagen Suborbitals hopes to launch the world’s first amateur-built rocket for human space travel and have announced an upcoming launch window for their Tycho Brahe capsule. The window extends from June 1-14, 2011 and they are currently shooting for Thursday, June 2 for an unmanned suborbital test flight, according the their website. The group is headed by Kristian von Bengtson and Peter Madsen, and their HEAT 1-X rocket is being prepared for launch from a steel catamaran in the Baltic Sea off the coast of Denmark.

If all goes well with this test flight, Madsen hopes to be inside the capsule himself for a manned flight in the near future.

The company, which is funded by donations, is working towards launching tourists on suborbital flights in the single-seat capsule to altitudes above 100 kilometers (62.5 miles).

And talk about a wild ride : the Tycho Brahe capsule will provide a single passenger capsule with a full view through a polymer plexiglas-dome so that the person can see and experience the entire ballistic ride. It has a pressurized volume providing support for one upright standing/half-sitting person. It will also have additional pressurized space, around and behind the astronaut, available for several other systems necessary for the flight procedure, and to support additional scientific and commercial project.

The flight trajectory for the HEAT rocket. Credit: Copenhagen Suborbitals.

No specific launch time has been announced, so check their website for more updated information. There will also be live coverage and launch parties in Denmark.

Check these links for possible online coverage:

Live internet coverage: www.ing.dk/live
and http://maylaunch.dotsquare.dk/

Copenhagen Suborbitals were hoping to launch their first test flight last summer, but ran into problems with their rocket.

Globular Clusters Are Real Oddballs

M80 Image Credit: NASA, The Hubble Heritage Team, STScI, AURA

[/caption]

Hanging onto the outskirts of our Milky Way galaxy like cockle burs on a shaggy dog’s coat, globular clusters contain over hundreds of thousands of stars. Estimated to be up to ten billion years old, these spherical stellar seed pods are gravitationally bound together and tend to be more dense towards their cores. We’ve long known all the stars contained within a globular cluster to be about the same age and the individual members most likely formed at the same time as the parent galaxy – but what we weren’t expecting was change.

“We thought we understood these clusters very well”, says Dr. Alison Sills, Associate Professor of Physics & Astronomy. She is presenting new findings at this week’s CASCA 2011 meeting in Ontario, Canada. “We taught our students that all the stars in these clusters were formed at the same time, from one giant cloud of gas. And since that time, the individual stars may have evolved and died, but no new stars were born in the cluster.”

In 1953, astronomer Allan Sandage was performing photometry of the stars in the globular cluster M3 when he made an incredible discovery – blue stragglers. No, it’s not a down-his-luck musician waiting for a coin in his instrument case… but a main sequence star more luminous and more blue than stars at the main sequence turn-off point for the cluster. They shouldn’t belong where they are, but with masses two to three times that of the rest of the main sequence cluster stars, blue stragglers seem to be exceptions to the rule. Maybe they are a product of interaction… grappling together… pulling material from one another… and eventually merging.

Image of NGC 6397 taken by the Hubble Space Telescope, with evidence of a number of blue stragglers.

“Astronomers expect that the stars get too close to each other because of the complicated dance that stars perform in these dense clusters, where thousands of stars are packed into a relatively small space, and each star is moving through this cluster under the influence of the gravity of all the other stars. Somewhat like a traffic system with no stop lights, there are a lot of close encounters and collisions,” explains Sills.

By taking a closer look at globular clusters, the Hubble Space Telescope has given us evidence for two generations of star formation. The first is our accepted rule, but the second generation isn’t like anything else found in our Galaxy. Instead of being created from an earlier generation of expended stars, the second generation in globular clusters appears to have formed from material sloughed off by the first generation of stars. An enigma? You bet.

“Studying the normal stars in clusters was instrumental in allowing astronomers to figure out how stars lived and died”, says Dr. Sills, “but now we can look even further back, to when they were born, by using the oddballs. It pays off to pay attention to the unusual individuals in any population. You never know what they’ll be able to tell you.”

At the CASCA conference, Dr. Sills is presenting her work – a link between these two unusual forms of globular clusters. Blue stragglers and the second generation of stars would appear to have identical properties, including where they are concentrated in the cluster, and that both are.. well.. a little more “blue” than we would expect. She is investigating how the close encounters and collisions could affect the formation of this strange second generation and link the two phenomena we see in these complicated systems.

Real oddballs…

Original story soucre at Physorg.com.

Dead Galaxy? Don’t Think So.

University of Michigan astronomers examined old galaxies and were surprised to discover that they are still making new stars. The results provide insights into how galaxies evolve with time.

[/caption]

There was a time when most astronomers concluded that elliptical galaxies were a lot like their globular clusters – full of similarly evolved and aged stars. But not anymore. Thanks to the resolving power of the Hubble Space Telescope, a team of researchers from the University of Michigan were able to peer into the heart of Messier 105 and pick out several young stars and clusters. Apparently, “The reports of my death have been greatly exaggerated…”

U-M research fellow Alyson Ford and astronomy professor Joel Bregman are scheduled to present their findings May 31 at a meeting of the Canadian Astronomical Society in London, Ontario. Using the Wide Field Camera 3 on the Hubble Space Telescope, they saw individual young stars and star clusters in four galaxies that are about 40 million light-years away. One light-year is about 5.9 trillion miles.

“Scientists thought these were dead galaxies that had finished making stars a long time ago,” Ford said. “But we’ve shown that they are still alive and are forming stars at a fairly low level.”

We’re all aware of differing galaxy structures, from grand design spirals to disturbed irregulars. However, perhaps one of the most common is the elliptical. Ranging in flat form to nearly spherical, these smooth customers can contain anywhere from hundreds of millions to over one trillion stars – and most of them are believed to be the offspring of galaxy collision. Most elliptical galaxies are composed of older, low-mass stars, with a sparse interstellar medium and minimal star formation activity. Making up somewhere between 10 to 15% of known galaxy population, they are surrounded by globular clusters and usually make their home at the center of galaxy clusters. But what elliptical galaxies aren’t known for is star formation.

“Astronomers previously studied star formation by looking at all of the light from an elliptical galaxy at once, because we usually can’t see individual stars. Our trick is to make sensitive ultraviolet images with the Hubble Space Telescope, which allows us to see individual stars.” said Ford. “”We were confused by some of the colors of objects in our images until we realized that they must be star clusters, so most of the star formation happens in associations.”

The eureka moment came when the team turned the Hubble towards a galaxy most of us have observed on a personal level – M105. Located 38 million light years away in the constellation of Leo and part of the M96 Galaxy Group, this rather ordinary looking elliptical galaxy is one of the brightest to observe. Although there wasn’t any reason to believe star formation was in progress, Ford and Bregman saw a few bright, very blue stars, resembling a single star 10 to 20 times the mass of the Sun. In addition, they also observed objects that aren’t blue enough to be single stars, but instead are clusters of many stars. When accounting for these clusters, stars are forming in Messier 105 at an average rate of one Sun every 10,000 years, Ford and Bregman concluded. “This is not just a burst of star formation but a continuous process,” Ford said.

New stars from a dead galaxy? Maybe it’s a zombie. And it’s not the first time the Hubble has looked its way, either. Investigations of the central region of M105 have revealed that this galaxy contains a massive central object of about 50 million solar masses – a supermassive black hole. Of course, this new evidence creates more questions than it answers and high among the ranks is the origin of the gas that forms the stars.

“We’re at the beginning of a new line of research, which is very exciting, but at times confusing,” Bregman said. “We hope to follow up this discovery with new observations that will really give us insight into the process of star formation in these ‘dead’ galaxies.”

Dead… But maybe not so dead, after all.

Original story source Physorg.com.

Spirit’s Last Panorama

The Spirit rover's last panoramic image, taken before its fourth Martian winter on on Sol 2175, or February, 2010. Credit: Mosaic by Marco De Lorenzo and Ken Kremer, image NASA/JPL/Cornell University.

[/caption]

Today’s Astronomy Picture of the Day (APOD) features an image mosaic put together in part by Universe Today’s Ken Kremer, along with his imaging partner Marco De Lorenzo. It’s the last thing the Spirit rover ever saw: a panoramic view of the Home Plate region of Gusev Crater where the rover now silently sits. In the background are the Columbia Hills, where Spirit climbed and investigated Husband Hill. Visible are parts of Spirit herself and the stark but enticing landscape where Spirit will be forever mired in sand.

Congrats to Ken and Marco for being featured on APOD!

Interview and tour with GLXP team Omega Envoy – SpacePod 2011.05.30

Spacevidcast’s Jason Rhian had a chance to go behind the scenes with the Google Lunar X PRIZE team Omega Envoy to take a peek at their new facility and the progress of their lunar rover. Omega Envoy is one of nearly 30 teams competing to win part of the $30 million dollar pot for sending a rover to the moon and completing specific tasks.
Continue reading “Interview and tour with GLXP team Omega Envoy – SpacePod 2011.05.30”

Exoplanet Kepler-7b Unexpectedly Reflective

Artist concept of Kepler in space. Credit: NASA/JPL

[/caption]

 

Early on in the hunt for extra solar planets, the main method for discovering planets was the radial velocity method in which astronomers would search for the tug of planets on their parent stars. With the launch of NASA’s Kepler mission, the transit method is moving into the spotlight, the radial velocity technique provided an early bias in the detection of planets since it worked most easily at finding massive planets in tight orbits. Such planets are referred to as hot Jupiters. Currently, more than 30 of this class of exoplanet have had the properties of their emission explored, allowing astronomers to build a picture of the atmospheres of such planets. However, one of the new hot Jupiters discovered by the Kepler mission doesn’t fit the picture.

The consensus on these planets is that they are expected to be rather dark. Infrared observations from Spitzer have shown that these planets emit far more heat than they absorb directly in the infrared forcing astronomers to conclude that visible light and other wavelengths are absorbed and reemitted in the infrared, producing the excess heat and giving rise to equilibrium temperatures over 1,000 K. Since the visible light is so readily absorbed, the planets would be rather dull when compared to their namesake, Jupiter.

The reflectivity of an object is known as its albedo. It is measured as a percentage where 0 would be no reflected light, and 1 would be perfect reflection. Charcoal has an albedo of 0.04 while fresh snow has an albedo of 0.9. The theoretical models of hot Jupiters place the albedo at or below 0.3, which is similar to Earth’s. Jupiter’s albedo is 0.5 due to clouds of ammonia and water ice in the upper atmosphere. So far, astronomers have placed upper limits on their albedo. Eight of them confirm this prediction, but three of them seem to be more reflective.

In 2002, it was reported that the albedo for υAnd b was as high as 0.42. This year, astronomers have placed constraints on two more systems. For HD189733 b, astronomers found that this planet actually reflected more light than it absorbed. For Kepler-7b, an albedo of 0.38 has been reported.

Revisiting this for the latter case, a new paper, slated for publication in an upcoming issue of the Astrophysical Journal, a team of astronomers led by Brice-Olivier Demory of the Massachusetts Institute of Technology confirms that Kepler-7b has an albedo that breaks the expected limit of 0.3 set by theoretical models. However, the new research does not find it to be as high as the earlier study. Instead, they revise the albedo from 0.38 to 0.32.

To explain this additional flux, the team proposes two models. They suggest that Kepler-7b may be similar to Jupiter in that it may contain high altitude clouds of some sort. Due to the proximity to its parent star, it would not be ice crystals and thus, would not reach as high of an albedo as Jupiter, but preventing the incoming light from reaching lower layers where it could be more effectively trapped would help to increase the overall albedo.

Another solution is that the planet may be lacking the molecules most responsible for absorption such as sodium, potassium, titanium monoxide and vanadium monoxide. Given the temperature of the planet, it is unlikely that the molecular components would be present in the first place since they would be broken apart from the heat. This would mean that the planet would have to have 10 to 100 times less sodium and potassium than the Sun, whose chemical composition is the basis for models since our star’s composition is generally representative of stars around which planets have been discovered and presumably, the cloud from which it formed and would also form into planets.

Presently there is no way for astronomers to determine which possibility is correct. Since astronomers are slowly becoming able to retrieve spectra of extrasolar planets, it may be possible in the future for them to test chemical compositions. Failing that, astronomers will need to examine the albedo of more exoplanets and determine just how common such reflective hot Jupiters are. If the number remains low, the plausibility of metal deficient planets remains high. However, if the numbers start creeping up, it will prompt a revision to models of such planets and their atmospheres with greater emphasis on clouds and atmospheric haze.