The Final Countdown: Fueling the Anticipation

The world will be watching - and tweeting! – when Atlantis launches on July 8

An update on my NASA Tweetup adventure…

The world will be watching - and tweeting! – when Atlantis launches on July 8
The launch of the space shuttle Atlantis is just a week away, and with it the NASA Tweetup event of a lifetime. (Well, my lifetime anyway!) But it’s not just me who’s been having visions of shuttle plumes dancing in his head… there’s 149 other space tweeps (yes, that’s what we call ourselves) who are eagerly counting the days, hours and minutes until then.

Here’s what some of them are saying…

“Wicked excited! (says the Boston gal – who yes, now lives in the Midwest!)” – Leslie Berg

“I’m so excited, and I just can’t hide it….” – David Parmet

“This has been a dream of mine since the first launch. I was so sad when I was unable to attend STS-134 with the delays and so excited when I found out that I could at least see the last launch paid to change my plane ticket to NYC for summer.” Dvora Geller

“It’s an honor to be chosen by NASA to be a part of the last flight in shuttle history.” – Heather Smith

“NASA has continued to fill the history books with their profound and inspirational achievements. I can’t believe I’ll witness another significant page being written for that book, in person, up close, on July 8th!! Bring it!!” – Justin Boddey

With people attending the Tweetup from not only all over the US but also all around the world, this is an awesome representation of the international attention that the final launch is getting.

Also, after some scouting about for the right contact person (thanks Susan!) I managed to get in touch with the metro editor at the Dallas Morning News and he assigned a reporter to cover my story. I had a phone interview this afternoon with her, and the story should be published next Tuesday! In addition they want to feature my Tweets on the news site live from the launch…I sure hope the 3G signal coverage isn’t overwhelmed!

Anyway by this time next week I and 149 others from around the world will be preparing for a very exciting morning… it’s going to be crazy, I’m sure, but totally worth it!

Stay tuned….

“I spend several moments a day suppressing the urge to freak right out over the fact that I’m going to be as close to going into space as I’ve ever been. There’s also a 9 year old in my head screaming SPACE SHUTTLE! all the time. It’s really distracting. I feel so lucky.” – Nicole KT Winchester

“Since the day I found out I was selected to attend the Tweetup, it’s been on my mind every minute of every day. I’m basically trying not to die before July 7th.” – Andres Almeida

“I can pretty much guarantee my reaction to seeing a space shuttle live, in person, will be, ‘Whoah.’ Followed shortly by, ‘That’s pretty.'” – Kara DeFrias

_________________

Jason Major is a graphic designer, photo enthusiast and space blogger. Visit his website Lights in the Dark and follow him on Twitter @JPMajor or on Facebook for the most up-to-date astronomy awesomeness!

Neptune: Rocking The Dreidel

In this image, the colors and contrasts were modified to emphasize the planet’s atmospheric features. The winds in Neptune’s atmosphere can reach the speed of sound or more. Neptune’s Great Dark Spot stands out as the most prominent feature on the left. Several features, including the fainter Dark Spot 2 and the South Polar Feature, are locked to the planet’s rotation, which allowed Karkoschka to precisely determine how long a day lasts on Neptune. (Image: Erich Karkoschka)

When it come to making your head spin, Jupiter revolves on its axis in less than 10 hours. Up until now, it was the only gas planet in our solar system that had an accurate spin measurement. But grab your top and cut it loose, because University of Arizona planetary scientist Erich Karkoschka has clocked Neptune cruising around at a cool 15 hours, 57 minutes and 59 seconds.

“The rotational period of a planet is one of its fundamental properties,” said Karkoschka, a senior staff scientist at the UA’s Lunar and Planetary Laboratory. “Neptune has two features observable with the Hubble Space Telescope that seem to track the interior rotation of the planet. Nothing similar has been seen before on any of the four giant planets.”

Like spinning gelatin, the gas giants – Jupiter, Saturn, Uranus and Neptune – don’t behave in an easy to study manner. By nature they deform as they rotate, making accurate estimates difficult to pin down.

“If you looked at Earth from space, you’d see mountains and other features on the ground rotating with great regularity, but if you looked at the clouds, they wouldn’t because the winds change all the time,” Karkoschka explained. “If you look at the giant planets, you don’t see a surface, just a thick cloudy atmosphere.”

Of course, 350 years ago Giovanni Cassini was able to estimate Jupiter’s rotation by observing the Great Red Spot – an atmospheric condition. Neptune has observable atmospheric conditions, too… But they’re just a bit more transitory. “On Neptune, all you see is moving clouds and features in the planet’s atmosphere. Some move faster, some move slower, some accelerate, but you really don’t know what the rotational period is, if there even is some solid inner core that is rotating.”

Roughly 60 years ago astronomers discovered Jupiter gave out radio signals. These signals originated from its magnetic field generated by the spinning inner core. Unfortunately signals of this type from the outer planets were simply lost in space before they could be detected from here on Earth. “The only way to measure radio waves is to send spacecraft to those planets,” Karkoschka said. “When Voyager 1 and 2 flew past Saturn, they found radio signals and clocked them at exactly 10.66 hours, and they found radio signals for Uranus and Neptune as well. So based on those radio signals, we thought we knew the rotation periods of those planets.”

[/caption]

Using the data from the Voyager probes, Karkoschka went to work studying rotation periods and combined it with available images of Neptune from the Hubble Space Telescope archive. Like Cassini’s work, he carefully studied atmospheric features in hundreds upon hundreds of photographs taken over a time sequence… a period of 20 years. He realized an observer watching the massive planet turn from a fixed spot in space would see these features appear exactly every 15.9663 hours, with less than a few seconds of variation. This led him to surmise a hidden interior feature on Neptune drives the mechanism that creates the atmospheric signature.

“So I dug up the images of Neptune that Voyager took in 1989, which have better resolution than the Hubble images, to see whether I could find anything else in the vicinity of those two features. I discovered six more features that rotate with the same speed, but they were too faint to be visible with the Hubble Space Telescope, and visible to Voyager only for a few months, so we wouldn’t know if the rotational period was accurate to the six digits. But they were really connected. So now we have eight features that are locked together on one planet, and that is really exciting.”

Original Story Source: University of Arizona News.

Eccentric Binary Creates Dual Gamma-Ray Flares

This diagram, which illustrates the view from Earth, shows the binary's anatomy as well as key events in the pulsar's recent close approach. Credit: NASA/Goddard Space Flight Center/Francis Reddy

[/caption]

It’s a gamma-ray flare – the most extreme form of light so far known. So, what could top it? Try a pair of gamma-ray flares. Way off in the southern constellation of Crux, an extreme team of stars gave a real show to NASA’s Fermi Gamma-ray Space Telescope. In December 2010, they blew past each other at about the distance Venus orbits our Sun. Why was this encounter so unique? Because one member was hot and blue/white… and the other a pulsar.

“Even though we were waiting for this event, it still surprised us,” said Aous Abdo, a Research Assistant Professor at George Mason University in Fairfax, Va., and a leader of the research team.

Astronomers were aware that PSR B1259-63 and LS 2883 made a close pass to each other about every 3 to 4 years and were eagerly anticipating the action. Residing at about 8,000 light years away, the signature signal from PSR B1259-63 was discovered in 1989 by the Parkes radio telescope in Australia. It is suspected to be quite small – about the size of Washington, DC and weighs about twice as much as Sol. What’s cool is it rotates at a dizzying 21 times per second… shooting of a powerful beam of electromagnetic energy that sweeps around like a search light. Next door the blue/white companion star lay embedded in gas, measuring in about 9 times larger size and weighing in at about 24 solar masses. Of these “odd couples” only four are known to produce gamma-rays and only this particular system is known to contain a pulsar… one that punches through the gas disk both coming and going during orbit.

“During these disk passages, energetic particles emitted by the pulsar can interact with the disk, and this can lead to processes that accelerate particles and produce radiation at different energies,” said study co-author Simon Johnston of the Australia Telescope National Facility in Epping, New South Wales. “The frustrating thing for astronomers is that the pulsar follows such an eccentric orbit that these events only happen every 3.4 years.”

On December 15, 2010, all “eyes” and “ears” were turned the system’s way in anticipation of the dual gamma-ray burst. The observatories included Fermi and NASA’s Swift spacecraft; the European space telescopes XMM-Newton and INTEGRAL; the Japan-U.S. Suzaku satellite; the Australia Telescope Compact Array; optical and infrared telescopes in Chile and South Africa; and the High Energy Stereoscopic System (H.E.S.S.), a ground-based observatory in Namibia that can detect gamma rays with energies of trillions of electron volts, beyond Fermi’s range.

“When you know you have a chance of observing this system only once every few years, you try to arrange for as much coverage as you can,” said Abdo, the principal investigator of the NASA-funded international campaign. “Understanding this system, where we know the nature of the compact object, may help us understand the nature of the compact objects in other, similar systems”.

While the EGRET telescope aboard NASA’s Compton Gamma-Ray Observatory had been observing this rare pair since the 1990s, no gamma-ray emission in the billion-electron-volt (GeV) energy range had ever been recorded. But, as the time of passage approached, the Large Area Telescope (LAT) aboard Fermi began to pick up faint gamma-ray emission. “During the first disk passage, which lasted from mid-November to mid-December, the LAT recorded faint yet detectable emission from the binary. We assumed that the second passage would be similar, but in mid-January 2011, as the pulsar began its second passage through the disk, we started seeing surprising flares that were many times stronger than those we saw before,” Abdo said.

To make this strange scenario even more unusual, radio and x-ray readings were nominal as the gamma-rays flared. “The most intense days of the flare were Jan. 20 and 21 and Feb. 2, 2011,” said Abdo. “What really surprised us is that on any of these days, the source was more than 15 times brighter than it was during the entire month-and-a-half-long first passage.”

It won’t happen again until May, 2014… But you can bet astronomers will be tuned in to catch the action!

Original Story Source: NASA / Fermi News.

Reason to Serve Red Wine on the Space Station?

Cosmonauts gather to have some cognac on the Mir space station in 1997. The image was taken by NASA astronaut Jerry Linenger.

[/caption]

Some new research may make NASA reconsider its “no alcohol in space” policy. A new study suggests that the “healthy” ingredient in red wine, resveratrol, may prevent the negative effects that weightlessness has on muscle and bone metabolism. This also could apply to people who live sedentary lifestyles.

The study had rats in the simulated the weightlessness of spaceflight, and the group that was fed resveratrol did not develop loss of bone mineral density or develop insulin resistance, as did those who were not fed resveratrol.

Weightlessness was simulated by hindlimb tail suspension, a common technique used to study weightlessness physiology. The control group that was not given resveratrol showed a decrease in soleus muscle mass and strength, the development of insulin resistance, and a loss of bone mineral density. The group receiving resveratrol showed none of these complications.

“There are overwhelming data showing that the human body needs physical activity, but for some of us, getting that activity isn’t easy,” said Gerald Weissmann, M.D., Editor-in-Chief of the journal Federation of the American Societies for Experimental Biology (FASEB). “A low gravity environment makes it nearly impossible for astronauts. For the earthbound, barriers to physical activity are equally challenging, whether they be disease, injury, or a desk job. Resveratrol may not be a substitute for exercise, but it could slow deterioration until someone can get moving again.”

Of course, resveratrol can be taken in supplement form, but why spoil the fun? It is well known that Russian cosmonauts have imbibed in space, although probably not on the International Space Station. Alexander Lazutkin, who served aboard the Mir space station has said that Russian doctors recommended alcohol for “neutralizing the harmful effect of the atmosphere,” to keep cosmonauts “in tone” and to neutralize tension.

Weissmann added that red wine could become the “toast of the Milky Way.”

The study was published in the FASEB Journal

Sources: EurekAlert, Cosmic Log

Astronomy Cast Ep. 224: Orion

Orion Nebula. Image credit: Hubble

Most people know how to find two constellations: the Big Dipper, and Orion the Hunter. You can teach a small child to find Orion, and at the right time of year, they’ll find it in seconds. There’s so much going on in this spectacular constellation, from the star formation in the Orion Nebula to mighty red supergiant Betelgeuse, ready to explode. Let’s learn about the history and science of the constellation Orion.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

Orion shownotes and transcript.

Spectacular View from LRO of Tycho Crater’s Central Uplifts

Oblique view of Tycho crater. Credit: NASA/GSFC/Arizona State University.

[/caption]

Here’s the Moon like you’ve never seen it before: a dramatic sunrise view of Tycho Crater on the Moon, highlighting the peaks and crags of the crater’s central uplifts. On June 10,2011 the Lunar Reconnaissance Orbiter slewed 65° to the west, allowing the Narrow Angle Camera to capture a “sideways” look at Tycho crater, resulting in a spectacular image. The central peak complex is about 15 km wide southeast to northwest (left to right in this view). Below are more images and a video which spans and zooms in to the entire image.


Tycho Crater is a very popular target with amateur astronomers since it is easily seen from Earth. The crater measures about 82 km (51 miles) in diameter, and the summit of the central peak is 2 km (6562 ft) above the crater floor, and the crater floor is about 4700 m (15,420 ft) below the rim.

Central uplifts form in larger impact craters in response to the impact event.

LROC principal investigator Mark Robinson wrote on the LRO website, “Tycho’s features are so steep and sharp because the crater is young by lunar standards, only about 110 million years old….Were these distinctive outcrops formed as a result of crushing and deformation of the target rock as the peak grew? Or do they represent preexisting rock layers that were brought intact to the surface? Imagine future geologists carefully making their way across these steep slopes, sampling a diversity of rocks brought up from depth.”

Here’s a close-up of the summit. The boulder in the background is 120 meters wide, and the image is about 1200 meters wide.

Oblique view of summit area of Tycho crater central peak. Credit: NASA/GSFC/Arizona State University

And here’s the entire crater:

LROC WAC mosaic of Tycho crater with lighting similar to that when the NAC oblique image was taken. Mosaic is 130 km wide, north is up. Credit: NASA/GSFC/Arizona State University.

Click on the images for larger versions on the LROC website, or see this link for more information on these images.

Source: LROC

SpaceX Seeking Tweets From The Final Frontier

SpaceX has been working to increase awareness of its Twitter account, @SpaceXer - this is to provide the public with greater awareness of the company's events and activities. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]

Space Exploration Technologies — or SpaceX as they are more commonly known — has gotten pretty good at launching rockets. Now they want the rest of the world to follow along – one Tweet at a time. The social media site Twitter allows users to post brief comments (under 140 characters). SpaceX views this as a means to keep the public informed about the company’s activities including the upcoming launch of the firm’s Falcon 9 rocket.

SpaceX can be found under the name of @SpaceXer. The NewSpace firm will post regular updates about the company’s activities on Twitter. SpaceX has been working to increase its public and media relations efforts lately. The push for more viewers on Twitter is part of these efforts.

“There are a lot of amazing things that are taking place at a daily basis at SpaceX,” said SpaceX’s Vice President of Communications Bobby Block. “We want to invite the public, everyone really, to follow these events on our Twitter account.”

SpaceX currently plans to launch the next of its Falcon 9 rockets this September. It will be another mission to prove out the Falcon 9’s readiness to begin cargo flights to the space station. For this mission, a flyby of the International Space Station is planned to test out communications equipment. The Dragon spacecraft will then reenter Earth’s atmosphere and splash down in the Pacific Ocean.

SpaceX is planning to launch a third of its Falcon 9 rockets this fall. This mission will send a Dragon Spacecraft on a flyby mission to the International Space Station to test rendezvous and communications equipment. Photo Credit: Alan Walters/awaltersphoto.com

This will be the third time that SpaceX has launched a Falcon 9 from Space Launch Complex 40 at Cape Canaveral Air Force Station (CCAFS) in Florida. This past December SpaceX became the first private company to launch a spacecraft to orbit and retrieve it safely from the Pacific Ocean. It is accomplishments such as this that SpaceX wants to broadcast to the world.

“SpaceX has successfully demonstrated not only the viability of the Falcon 9 as a launch vehicle – but also the capabilities of the Dragon Spacecraft,” Block said. “This is just the beginning, now we want the world to come ride along with us.”

SpaceX was selected for not only the Commercial Orbital Transportation Services (COTS) contract with NASA – which has a $1.6 billion value but for NASA’s Commercial Crew Development 2 (CCDev-02) contract as well. Add to that the many business deals that SpaceX has made to send payloads into orbit – and SpaceX has a lot to tweet about.

SpaceX and founder Elon Musk have made it public knowledge regarding their plans to one day launch astronauts to the International Space Station, build a far larger version of its Falcon 9 dubbed the “Falcon Heavy” and to reach out to the planet Mars. SpaceX thinks with plans such as these in the works, space fans and novices alike will be very interested in following along.

Of course, SpaceX is not the only space organization that has recognized the value of social media like Twitter. NASA has embraced Twitter, with almost all of the missions and spacecrafts having Twitter accounts, and fans are finding Twitter to be a great way to find out the latest details from space. Additionally, NASA regularly hosts “Tweetups” when large events are scheduled to take place, such as the upcoming final launch of the space shuttle program.

Are you plugged in? SpaceX is hoping that you soon will be - to their Twitter account - @SpaceXer Photo Credit: Alan Walters/awaltersphoto.com

Dawn Closing in on Asteroid Vesta as Views Exceed Hubble

Hubble and Dawn Views of Vesta. These views of the protoplanet Vesta were obtained by NASA's Dawn spacecraft and NASA's Hubble Space Telescope. The image from Dawn, on the left, is a little more than twice as sharp as the image from Hubble, on the right. The image from Hubble, which is in orbit around the Earth, was obtained on May 14, 2007, when Vesta was 109 million miles (176 million kilometers) away from Earth. Dawn's image was taken on June 20, 2011, when Dawn was about 117,000 miles (189,000 kilometers) away from Vesta. The framing cameras were developed and built under the leadership of the Max Planck Institute for Solar System Research in Katlenburg-Lindau, Germany. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/PSI and NASA/ESA/STScI/UMd

[/caption]

A new world in our Solar System is about to be unveiled for the first time – the mysterious protoplanet Vesta, which is the second most massive object in the main Asteroid Belt between Mars and Jupiter.

NASA’s Dawn Asteroid orbiter has entered its final approach phase to Vesta and for the first time is snapping images that finally exceed those taken several years ago by the iconic Hubble Space Telescope.

“The Dawn science campaign at Vesta will unveil a mysterious world, an object that can tell us much about the earliest formation of the planets and the solar system,” said Jim Adams, Deputy Director, Planetary Science Directorate at NASA HQ at a briefing for reporters.

Vesta holds a record of the earliest history of the solar system. The protoplanet failed to form into a full planet due to its close proximity to Jupiter.

Check out this amazing NASA approach video showing Vesta growing in Dawn’s eyes. The compilation of navigation images from Dawn’s framing camera spans about seven weeks from May 3 to June 20 was released at the NASA press briefing by the Dawn science team.

Dawn’s Approach to Vesta – Video

Best View from Hubble – Video

Be sure to notice that Vesta’s south pole is missing due to a cataclysmic event eons ago that created a massive impact crater – soon to be unveiled in astounding clarity. Some of that colossal debris sped toward Earth and survived the terror of atmospheric entry. Planetary Scientists believe that about 5% of all known meteorites originated from Vesta, based on spectral evidence.

After a journey of four years and 1.7 billion miles, NASA’s revolutionary Dawn spacecraft thrusting via exotic ion propulsion is now less than 95,000 miles distant from Vesta, shaping its path through space to match the asteroid.

The internationally funded probe should be captured into orbit on July 16 at an initial altitude of 9,900 miles when Vesta is some 117 million miles from Earth.

After adjustments to lower Dawn to an initial reconnaissance orbit of approximately 1,700 miles, the science campaign is set to kick off in August with the collection of global color images and spectral data including compositional data in different wavelengths of reflected light.

Dawn Approaching Vesta
Dawn obtained this image on June 20, 2011. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/PSI and NASA/ESA/STScI/UMd

Dawn will spend a year investigating Vesta. It will probe the protoplanet using its three onboard science instruments – provided by Germany, Italy and the US – and provide researchers with the first bird’s eye images, global maps and detailed scientific measurements to elucidate the chemical composition and internal structure of a giant asteroid.

“Navigation images from Dawn’s framing camera have given us intriguing hints of Vesta, but we’re looking forward to the heart of Vesta operations, when we begin officially collecting science data,” said Christopher Russell, Dawn principal investigator, at the University of California, Los Angeles (UCLA). “We can’t wait for Dawn to peel back the layers of time and reveal the early history of our solar system.”

Because Dawn is now so close to Vesta, the frequency of imaging will be increased to twice a week to achieve the required navigational accuracy to successfully enter orbit., according to Marc Rayman, Dawn Chief Engineer at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif.

“By the beginning of August, it will see Vesta with more than 100 times the clarity that Hubble could ever obtain,” says Rayman.

Vesta in Spectrometer View
On June 8, 2011, the visible and infrared mapping spectrometer aboard NASA's Dawn spacecraft captured the instrument's first images of Vesta that are larger than a few pixels, from a distance of about 218,000 miles (351,000 kilometers). The image was taken for calibration purposes. An image obtained in the visible part of the light spectrum appears on the left. An image obtained in the infrared spectrum, at around 3 microns in wavelength, appears on the right. The spatial resolution of this image is about 60 miles (90 kilometers) per pixel. Credit: NASA/JPL-Caltech/UCLA/ASI/INAF

Dawn will gradually edge down closer to altitudes of 420 miles and 120 miles to obtain ever higher resolution orbital images and spectal data before spiraling back out and eventually setting sail for Ceres, the largest asteroid of them all.

Dawn will be the first spacecraft to orbit two celestial bodies, only made possible via the ion propulsion system. With a wingspan of 65 feet, it’s the largest planetary mission NASA has ever launched.

“We’ve packed our year at Vesta chock-full of science observations to help us unravel the mysteries of Vesta,” said Carol Raymond, Dawn’s deputy principal investigator at JPL.

“This is an unprecedented opportunity to spend a year at a body that we know almost nothing about,” added Raymond. “We are very interested in the south pole because the impact exposed the deep interior of Vesta. We’ll be able to look at features down to tens of meters so we can decipher the geologic history of Vesta.”

Possible Piece of Vesta
Scientists believe a large number of the meteorites that are found on Earth originate from the protoplanet Vesta. A cataclysmic impact at the south pole of Vesta, the second most massive object in the main asteroid belt, created an enormous crater and excavated a great deal of debris. Some of that debris ended up as other asteroids and some of it likely ended up on Earth. Image Credit: NASA/JPL-Caltech
Dawn Trajectory and Current Location on June 29, 2011. Credt: NASA/JPL
Dawn launch on September 27, 2007 by a Delta II rocket from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer

Read my prior feature about Dawn here

Noctilucent Clouds and A Bright Northern Star

Noctilucent Cloud display with the bright star Capella over West Berkshire UK Credit: Adrian West

[/caption]

Noctilucent Clouds are finally here! Well, at least they were for me at about 3:00am on the 29th of June.

I have heard that there have been some sightings, but for me, this mornings display heralds the new NLC season – a month later than usual?

Conditions were amazingly warm, and the night was still and magical as I looked northwards from my home in West Berkshire UK. I couldn’t help but notice a burning bright star almost due North and quite low, Capella in the constellation of Auriga! This is when I spotted the first faint wisps of noctilucent cloud.

Capella isn’t always in the North, but it is this time of year and it usually makes a guest appearance during morning noctilucent cloud displays.

Noctilucent clouds are very rare and tenuous clouds on the edge of space and occur at altitudes of around 76 to 85 kilometers (47 to 53 miles).

They are only seen when conditions are just right (still not fully understood) after sunset or before sunrise. They are illuminated by the sun, which is still way below the horizon from the observers location. Due to their very delicate nature, noctilucent clouds can only be seen at these times. More info on what NLC’s are, can be found here

Will you see any NLC’s?

Noctilucent clouds over Saimaa. Credit: Wikipedia