Dazzling Timelapse: Canary Skies

Tenerife, Canary Islands is home to several telescopes and at 2,000 meters above sea level, it claims one of the best skies on the planet. This incredibly stunning timelapse video from astrophotographer Daniel Lopez captures the nocturnal and crepuscular beauty of the island, showing the natural movement of the earth, stars, clouds, Sun and Moon. Lopez worked over a year to capture all possible shades and landscapes, pulling out all the stops by using several different timelapse techniques. Lopez promises more videos are coming, as he says this is the first in a series to capture the beauty of each of the Canary Islands.

Find more information at Lopez’s website, and see more videos at his Vimeo page.

Watch SpaceShipTwo’s First Feathered Flight

On May 4, 2011 Virgin Galactic’s SpaceShipTwo achieved a major milestone by flying for the first time using its “feathered” configuration, and the company has now released a close-up video of the flight. Feathering is designed to create drag and slow the ship down after it reenters the atmosphere from eventual suborbital flights taking tourists into space. This flight confirmed the feathering design should work.

“Now we now have an entry vehicle – now we can come back from space,” said Matt Stiemetze, Program Manager at Scaled Composites
Continue reading “Watch SpaceShipTwo’s First Feathered Flight”

Swirls, Gullies and Bedrock Create Two Jaw-Dropping Ethereal Mars Landscapes

A new image from the HiRISE camera on the Mars Reconnaissance Orbiter shows an ethereal landscape near Mars north pole. Credit: NASA/HiRISE team

[/caption]

Wow! These two latest images from the HiRISE Camera on the Mars Reconnaissance Orbiter are simply amazing. I couldn’t decide which to post on top as the lead image, so did a coin flip. This observation shows dune gullies laced with beautiful swirls of tracks left by dust devils. Just like on Earth, dust devils move across the Martian surface and expose the underlying darker material, creating a striking view. The HiRISE team has been tracking changes in this location (-70.3 degrees latitude and 178.2 degrees Longitude East), and they also compare it with dune gully activity going on in other regions. The science team says the activity here is rather anomalous for their high altitude location.

And the other image….

Dunes and bedrock near Noachis Terra on Mars. Credit: NASA/HiRISE team.

This HiRISE image shows a very unique butter brickle-like landscape — it is actually dunes and bedrock on the floor of a crater near Noachis Terra. What strikes me most is the clarity of the detail in this image — it is absolutely stunning.

Scientifically, this crater is unique because it has been very well characterized as being olivine-rich. Olivine is a magnesium-iron silicate that is very common on Earth. There are other regions of Mars that are also rich in olivine, and since olivine turns into other minerals in the presence of water, scientists are interested in looking for those minerals as well.

The science team says that while the large scale morphology of these craters is well characterized, this is not the case with fine scale layering and fracturing, such as what is seen here. Studying landscapes like this could help the understanding of large scale crustal processes on Mars, including the genesis of magmas and the creation of regolith.

All I know is that it is just plain pretty.

See more images at the HiRISE website.

More Dancing Plasma on the Sun

Here’s the reason for those auroras Tammy was talking about…The Solar Dynamics Observatory captures a beautiful filament eruption from the Sun in the early hours of May 17, 2011 which sent a cloud of plasma into space. This Coronal Mass Ejection was not aimed at Earth but it will likely interact with Earth’s magnetic field by the 19th, so be on the lookout for auroras. The second part of the video is from today, May 18, 2011 and shows some dancing plasma and more “plasma rain” similar to what we showed a last week. few days ago. The Sun’s gravity grabs and pulls the plasma back, even when it appears ready to travel off into space.

Lone Planets “More Common Than Stars”

Artist's concept of a free-floating Jupiter-like planet. (NASA / JPL-Caltech)

[/caption]

We happen to live in a solar system where everything seems to be tucked neatly in place. Sun, planets, moons, asteroids, comets… all turning and traveling through space in relatively neat and orderly fashions. But that may not always be the case; sometimes planets can get kicked out of their solar systems entirely, banished to roam interstellar space without a sun of their own. And these “orphan planets” may be much more numerous than once thought.

Researchers in a joint Japan-New Zealand study surveyed microlensing events near the central part of our galaxy during 2006 and 2007 and identified up to 10 Jupiter-sized orphan worlds between 10,000 and 20,000 light-years away. Based on the number of planets identified and the area studied they estimate that there could literally be hundreds of billions of these lone planets roaming our galaxy….literally twice as many planets as there are stars.

“Although free-floating planets have been predicted, they finally have been detected, holding major implications for planetary formation and evolution models.”

– Mario Perez, exoplanet program scientist at NASA Headquarters in Washington.

From the NASA release:

Previous observations spotted a handful of free-floating, planet-like objects within star-forming clusters, with masses three times that of Jupiter. But scientists suspect the gaseous bodies form more like stars than planets. These small, dim orbs, called brown dwarfs, grow from collapsing balls of gas and dust, but lack the mass to ignite their nuclear fuel and shine with starlight. It is thought the smallest brown dwarfs are approximately the size of large planets.

On the other hand, it is likely that some planets are ejected from their early, turbulent solar systems, due to close gravitational encounters with other planets or stars. Without a star to circle, these planets would move through the galaxy as our sun and other stars do, in stable orbits around the galaxy’s center. The discovery of 10 free-floating Jupiters supports the ejection scenario, though it’s possible both mechanisms are at play.

“If free-floating planets formed like stars, then we would have expected to see only one or two of them in our survey instead of 10. Our results suggest that planetary systems often become unstable, with planets being kicked out from their places of birth.”

– David Bennett, a NASA and National Science Foundation-funded co-author of the study from the University of Notre Dame.

The study wasn’t able to resolve planets smaller than Saturn but it’s believed there are likely many more smaller, Earth-sized worlds than large Jupiter-sized ones.

Read the full NASA news release here.

The study, led by Takahiro Sumi from Osaka University in Japan, appears in the May 19 issue of the journal Nature.

Aurora Alert!

Thanks to some very “hot” activity on the Sun, high latitude observers could be treated to some magnificent apparitions of the Aurora Borealis. But don’t count yourself out if you live a bit south of the pole… Sometimes the Northern Lights can surprise you!

According to Space Weather: “A magnetic filament exploded away from the sun on May 17th and propelled a cloud of plasma into space. The cloud (a CME) was not aimed directly at Earth, but it could deliver a glancing blow to our planet’s magnetic field during the late hours of May 19th.” And it wasn’t just then either… the Sun has been delivering some outstanding activity now for several days. Just check out this shot…

While the probability figures show as fairly low, don’t let that discourage you from looking. According to the latest information, the auroral oval is dipping low across the northern tier of the United States – leaving SkyWatchers from Canada through Kentucky an opportunity to spot a little skyglow. Why so optimistic? It’s the time of year…

Right now Earth’s magnetosphere and magnetopause (the point of contact) are positioned correctly to interact with the Sun’s influencing interplanetary magnetic field (IMF), and the plasma stream that flows past us as the solar wind. During the time around equinox – and even later – this leaves the door wide open for one of the most awesome signs of Spring… aurora! Visit the Geophysical Institute to sign up for aurora alerts, and use their tools to help locate the position of Earth’s auroral oval.

Spotting aurora isn’t hard, it simply just takes patience and reasonably dark skies. From experience you may see what looks like a distant search light – or it may appear as a red glow. At times the aurora can take on the appearance of a glowing green cloud that may or may not obscure the stars behind it. It shimmers and moves. How do you distinguish it from a cloud? Sometimes that can be difficult, but aurora will seem to “evaporate” rather than move with the wind. Having a few clouds won’t diminish the view and even moderate light pollution won’t stop it if the activity is strong enough. The most important factor is to give your eyes plenty of time to adjust to low light conditions and allow plenty of time for activity to happen.

Good luck… and may the Aurora be with you!

Many thanks to John Chumack of Galactic Images for sharing his recent solar photo and Aurora shots with us!

Timelapse: Clouds and Plume Amid Endeavour’s Launch

Photographers David Gonzales and Mike Deep shot this footage from the Kennedy Space Center Press Site for Universe Today of the final launch of NASA’s Space Shuttle Endeavour. See the launch approximately 27 times as fast, (don’t blink — you might miss it!) and watch how the smokey plume changes over time as it is tugged on by wind and casts a changing shadow on the cloud deck below. Replayed at 15 fps.

Below, see a timelapse of the RSS retract on May 15.

Continue reading “Timelapse: Clouds and Plume Amid Endeavour’s Launch”

Endeavour Docks at Space Station

Space Shuttle Endeavour and ESA's Columbus laboratory seen after the Shuttle docked with ISS on 18 May 2011. Credits: NASA

Space shuttle Endeavour docked for the final time at the International Space Station carrying six astronauts and the long-anticipated Alpha Magnetic Spectrometer, a physics experiment that will hunt for dark matter and antimatter. The docking occured at 1014 GMT, and the hatches between the two vehicles opened at 1138 GMT (7:38 am Eastern time), about an hour earlier than scheduled.

Above, watch as space shuttle Endeavour performs the Rendezvous Pitch Maneuver, or “backflip” so that the ISS crew can take high resolution pictures of the shuttle’s heat shield. Commander Mark Kelly rotated Endeavour to rotate 360 degrees backward.

[/caption]
The combined crews total 12 now on the ISS, but only until May 23, when space station crew members Dmitry Kondratyev, Cady Coleman and Paolo Nespoli undock in a Soyuz and return home to Earth. Unlike most shuttle missions to the ISS, the two crews are working in staggered shifts instead of being on the same timeline. This is because of the two-week launch delay for Endeavour making the mission, unfortunately, causing the mission to overlap with the departure of the station crew members. The three leaving the ISS need to adjust their sleep cycle to synch up with the landing day timeline.

The shuttle will remain at the station until May 30, with landing scheduled currently for June 1.

The STS-134 mission includes four spacewalks, in part to install the Alpha Magnetic Spectrometer-2, a two-billion-dollar, 15,000 pound (7,000 kilogram) particle detector that will hopefully operate for a decade and provide new details about the origins of the Universe.

The mission is commanded by astronaut Mark Kelly, the husband of US Congresswoman Gabrielle Giffords who is recovering after being shot in the head in January. Giffords reportedly will undergo intensive cranioplasty brain surgery in Houston this morning (May 18), just three days after attending the launch.

Carnival of Space #197

The tent is up! This week’s Carnival of Space is hosted by Steve Tilford at Steve’s Astro Corner.

Click here to read the Carnival of Space #197.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

New Satellite Will ‘Taste’ Earth’s Salty Seas from Orbit

Artist's concept of the Aquarius/SAC-D spacecraft, a collaboration between NASA and Argentina's space agency, with participation from Brazil, Canada, France and Italy. Aquarius, the NASA-built primary instrument on the spacecraft, will take NASA's first space-based measurements of ocean surface salinity, a key missing variable in satellite observations of Earth that links ocean circulation, the global balance of freshwater and climate. The mission is scheduled to launch in June. Image credit: NASA

[/caption]

From a JPL press release:

Final preparations are under way for the June 9 launch of the international Aquarius/SAC-D observatory. The mission’s primary instrument, Aquarius, will study interactions between ocean circulation, the water cycle and climate by measuring ocean surface salinity.

Engineers at Vandenberg Air Force Base in California are performing final tests before mating Aquarius/SAC-D to its Delta II rocket. The mission is a collaboration between NASA and Argentina’s space agency, Comision Nacional de Actividades Espaciales (CONAE), with participation from Brazil, Canada, France and Italy. SAC stands for Satelite de Applicaciones Cientificas. Aquarius was built by NASA’s Jet Propulsion Laboratory in Pasadena, Calif., and the agency’s Goddard Space Flight Center in Greenbelt, Md.

In addition to Aquarius, the observatory carries seven other instruments that will collect environmental data for a wide range of applications, including studies of natural hazards, air quality, land processes and epidemiology.

The mission will make NASA’s first space observations of the concentration of dissolved salt at the ocean surface. Aquarius’ observations will reveal how salinity variations influence ocean circulation, trace the path of freshwater around our planet, and help drive Earth’s climate. The ocean surface constantly exchanges water and heat with Earth’s atmosphere. Approximately 80 percent of the global water cycle that moves freshwater from the ocean to the atmosphere to the land and back to the ocean happens over the ocean.

Salinity plays a key role in these exchanges. By tracking changes in ocean surface salinity, Aquarius will monitor variations in the water cycle caused by evaporation and precipitation over the ocean, river runoff, and the freezing and melting of sea ice.

Salinity also makes seawater denser, causing it to sink, where it becomes part of deep, interconnected ocean currents. This deep ocean “conveyor belt” moves water masses and heat from the tropics to the polar regions, helping to regulate Earth’s climate.

“Salinity is the glue that bonds two major components of Earth’s complex climate system: ocean circulation and the global water cycle,” said Aquarius Principal Investigator Gary Lagerloef of Earth & Space Research in Seattle. “Aquarius will map global variations in salinity in unprecedented detail, leading to new discoveries that will improve our ability to predict future climate.”

Aquarius will measure salinity by sensing microwave emissions from the water’s surface with a radiometer instrument. These emissions can be used to indicate the saltiness of the surface water, after accounting for other environmental factors. Salinity levels in the open ocean vary by only about five parts per thousand, and small changes are important. Aquarius uses advanced technologies to detect changes in salinity as small as about two parts per 10,000, equivalent to a pinch (about one-eighth of a teaspoon) of salt in a gallon of water.

Aquarius will map the entire open ocean every seven days for at least three years from 408 miles (657 kilometers) above Earth. Its measurements will produce monthly estimates of ocean surface salinity with a spatial resolution of 93 miles (150 kilometers). The data will reveal how salinity changes over time and from one part of the ocean to another.

The Aquarius/SAC-D mission continues NASA and CONAE’s 17-year partnership. NASA provided launch vehicles and operations for three SAC satellite missions and science instruments for two.

JPL will manage Aquarius through its commissioning phase and archive mission data. Goddard will manage Aquarius mission operations and process science data. NASA’s Launch Services Program at the agency’s Kennedy Space Center in Florida is managing the launch.

CONAE is providing the SAC-D spacecraft, an optical camera, a thermal camera in collaboration with Canada, a microwave radiometer,; sensors from various Argentine institutions and the mission operations center there. France and Italy are contributing instruments.

See the Aquarius/SAC-D website for more information. , visit: