Carnival of Space #194

This week’s Carnival of Space is hosted by Brian Wang at Next Big Future.

Click here to read the Carnival of Space #194.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host; send an email to the above address.

An Astronaut’s Eye View of Shuttle Endeavour on the Launchpad

A view of the shuttle launchpad at Kennedy Space Center as seen by astronaut Mick Fincke flying in his T-38. Click for larger version on Fincke's yfrog page.

[/caption]

A great picture of shuttle Endeavour sitting on launchpad 39A at Kennedy Space Center, taken by Mike Fincke as he and his crewmates arrived in Florida yesterday to prepare for Endeavour’s final launch, scheduled for Friday.

Update: Another view, below.

Here's another view, including an additional T-38 from astronaut Terry Virts.

What Triggers a Type Ia Supernova? Chandra Finds New Evidence

This Chandra image of the Tycho supernova remnant contains new evidence for what triggered the original supernova explosion. Credit: NASA/CXC/Chinese Academy of Sciences/F. Lu et al.

[/caption]

What makes a star go boom? A new look at Tycho’s supernova remnant by the Chandra X-ray telescope has supplied astronomers with previously unseen evidence for what could trigger specific type of supernova, a Type Ia supernova explosion. Astronomers have spotted what appears to be material that was blasted off a companion star to a white dwarf when it exploded, creating the supernova seen by Danish astronomer Tycho Brahe in 1572. There is also evidence that this material blocked the explosion debris, creating an “arc” and a “shadow” in the supernova remnant.

There are two main types of supernovae. One is where a massive star – much bigger than our sun — burns all its nuclear fuel and collapses in on itself, which ignites a supernova explosion. Type Ia supernovae, however, are different. Smaller stars eventually turn into white dwarfs at the end of their lives, becoming an ultra-dense ball of carbon and oxygen about the size of the Earth, with the mass of our Sun. In some instances, though, a white dwarf somehow ignites, creating an explosion so bright that it can be seen billions of light years away, across much of the Universe. But astronomers really haven’t understood what causes these explosions to start.

There are a couple of popular theories: one scenario for Type Ia supernovas involves the merger of two white dwarfs. In this case, no companion star or evidence for material blasted off a companion should exist. In the other theory, a white dwarf pulls material from a “normal,” or Sun-like, companion star until a thermonuclear explosion occurs.

Both scenarios may actually occur under different conditions, but the latest Chandra result from Tycho supports the latter one.

This is an artist's impression showing an explanation from scientists for the origin of an X-ray arc in Tycho's supernova remnant. Credit: NASA/CXC/M.Weiss

The new Chandra images show the famous leftovers of Tycho’s supernova, and reveal for the first time an arc of X-ray emission within the supernova remnant. The shape of the arc is different from any other feature seen in the remnant. This supports the conclusion that a shock wave created the arc when a white dwarf exploded and blew material off the surface of a nearby companion star.

In addition, this new study seems to show how resilient some stars can be, as the supernova explosion appears to have blasted very little material off the companion star. Previously, studies with optical telescopes have revealed a star within the remnant that is moving much more quickly than its neighbors, hinting that it could be the missing companion.

“It looks like this companion star was right next to an extremely powerful explosion and it survived relatively unscathed,” said Q. Daniel Wang of the University of Massachusetts in Amherst, a member of the research team whose paper will appear in the May 1st issue of The Astrophysical Journal. “Presumably it was also given a kick when the explosion occurred. Together with the orbital velocity, this kick makes the companion now travel rapidly across space.”

This image shows iron debris in Tycho's supernova remnant. The site of the supernova explosion is shown, as inferred from the motion of the possible companion to the exploded white dwarf. The position of material stripped off the companion star by the explosion, and forming an X-ray arc, is shown by the white dotted line. This structure is most easily seen in an image showing X-rays from the arc's shock wave. Finally, the arc has blocked debris from the explosion creating a "shadow" in the debris between the red dotted lines, extending from the arc to the edge of the remnant. Credit: NASA/CXC/Chinese Academy of Sciences/F. Lu et al.

Using the properties of the X-ray arc and the candidate stellar companion, the team determined the orbital period and separation between the two stars in the binary system before the explosion. The period was estimated to be about 5 days, and the separation was only about a millionth of a light-year, or less than a tenth the distance between the Sun and the Earth. In comparison, the remnant itself is about 20 light-years across.

Other details of the arc support the idea that it was blasted away from the companion star. For example, the X-ray emission of the remnant shows an apparent “shadow” next to the arc, consistent with the blocking of debris from the explosion by the expanding cone of material stripped from the companion.

“This stripped stellar material was the missing piece of the puzzle for arguing that Tycho’s supernova was triggered in a binary with a normal stellar companion,” said Fangjun Lu of the Institute of High Energy Physics, Chinese Academy of Sciences in Beijing. “We now seem to have found this piece.”

Because Type Ia supernova are all of similar brightness, they are used as a standard candle to measure the expansion of the Universe, and this new observation by Chandra has helped to answer at least part of the long-standing – and critical — question of what triggers these bright explosions.

Source: Chandra

Several Student-Led Experiments to Fly on Endeavour

Several student experiments will travel with the more famous Alpha Magnetic Spectrometer-02 on the shuttle Endeavour. Image Credit: NASA.gov

[/caption]CAPE CANAVERAL – STS-134, the final flight of the space shuttle Endeavour – is set to carry several experiments of students from the middle school, high school and collegiate levels. Two of these payloads are sponsored by the NASA Florida Space Grant Consortium.

The first experiment is one that could provide some guidance on future long-duration space flight missions, it deals with seed germination. As missions take astronauts further and further away from Earth, they will need to be able to produce their own food. Learning everything possible about the effects of micro-gravity on seeds therefore is viewed as relevant and important research.

Student Spaceflight Experiments Program is working to ensure that the shuttle program maximizes its potential as a tool for education. Image Credit: SSEP

“Crystal Lake Middle Schools’ students and staff members are grateful that the Florida Space Grant Consortium has provided funding that will allow one of our student experiments to fly aboard the Space Shuttle Endeavour in low Earth orbit for 14 days,” said the Magnet Programs Coordinator for Crystal Lake Middle School, Lenecia McCrary. “The students entered a school-wide competition that involved proposing and designing real and practical experiments. The chosen experiment deals with investigating the effects of micro-gravity on apple seed germination.”

A little higher up on the educational ladder is the STEM Bar experiment being flown on STS-134. High school students Mikayla and Shannon Diesch won the 2010 Conrad Foundation Spirit of Innovation Award and will be at the launch watching as Endeavour takes their newly developed STEM Bar to the International Space Station. The STEM Bar was developed using NASA’s food safety standards and certified to fly on STS-134.

Another experiment, one comprised of squid embryos is being spearheaded by the University of Florida and will research the physiological impact of the micro-gravity environment on the animal’s growth and development.
“The Squids in Space project is a cohesive effort in which the full range of NASA Florida Space Grant Consortium supported categories work together on an experiment destined to fly on what will be the last flight of space shuttle Endeavour,” said Florida Space Grant Consortium Director Jaydeep Mukherjee. “This team, which is composed of Florida colleges and high school students and led by University of Florida PhD research scientist Jamie Foster, will connect the three tiers of education in an experiment studying the effects of microgravity on squid embryos.”

This experiment rack will allow astronauts to study how certain bacteria within squid embryos change in the microgravity environment. Photo Credit: NASA FSGC

The inclusion of these student experiments on board Endeavour is viewed by those sponsoring and supporting these student-led experiments as evidence of NASA’s commitment to educational outreach. NASA has to maximize every square inch of space on the orbiters to stock up the space station for the post-shuttle era. As such, clearing room for these experiments highlights is viewed as an expression of the high value that the space agency places on education. After the launch of Endeavour only a single shuttle flight remains in the program, STS-135 which is slated for liftoff on June 28 on space shuttle Atlantis.

Students from the University of Florida are sending squid embryos into space on space shuttle Endeavour's final mission. Photo Credit: NASA FSGC

Shuttle Endeavour Will Be Visible Over UK Just After Final Launch

Credit: Adrian West

[/caption]

On April 29th, 2011, the space shuttle Endeavour is scheduled to blast off for the last time, delivering the Alpha Magnetic Spectrometer and an ExPRESS Logistics Carrier to the International Space Station.

If you live in the UK you can watch the launch live on NASA TV and a number of other sites on the internet, but that’s not all you can do! You may be able to watch it fly over the UK with your very own eyes about 20 minutes later!

Yes! You can watch the Shuttle fly over the UK roughly 20 minutes after launch (launch time is currently set for 3:47 p.m. EDT – 8:47 p.m. UK Time) if the timing is right and skies are clear. It will be accompanied by its bright orange external fuel tank as it sails across the sky.

I was lucky to see and actually film this in August 2009 with the launch of STS-128 Space Shuttle Discovery.

How to see it? Go outside roughly 15 – 20 minutes after launch and you could see two bright objects similar to what the ISS looks like when it passes over, moving at roughly the same speed. These bright objects in parallel to each other will follow a similar track in the sky to what the ISS does, but it will be the Shuttle Endeavour and its separated external fuel tank!

Hope for clear skies and that the launch isn’t delayed, as this may be our last chance ever of seeing a space shuttle fly over the UK just after launch.

Checkout NASA’s listing of sighting opportunities for your area.

Good luck to the crew of the shuttle and to everyone trying to spot it in the sky on Friday!

Commander Mark Kelly and STS-134 Crew Arrive at Kennedy for Endeavour’s Final Flight

The STS-134 astronauts crew arrives at the Shuttle Landing Facility at the Kennedy Space Center to begin final launch preps for Endeavour's STS-134 mission. From left are Mission Specialists Greg Chamitoff, Andrew Feustel, Commander Mark Kelly, Pilot Greg H. Johnson, Mission Specialist Mike Fincke and European Space Agency astronaut Roberto Vittori. Credit : Alan Walters, awaltersphoto.com

[/caption]

KENNEDY SPACE CENTER – The six man crew for Shuttle Endeavour’s final flight to space arrived today (April 26) at the Kennedy Space Center in Florida. The crew flew in to the Shuttle Landing Facility (SLF) on a quartet of T-38 jets from their training base in Houston.

Shuttle Commander Mark Kelly introduced his crew to a large crowd of gathered reporters, photographers and NASA officials including Launch Director Mike Leinbach, KSC Director Bob Cabana and Kelly’s twin brother Scott who recently returned from a six month stint aboard the International Space Station.

Shuttle Commander Mark Kelly addresses the media at the shuttle landing strip after crew arrival on April 26. From left: Mission Specialists Greg Chamitoff, Andrew Feustel, Commander Mark Kelly, Pilot Greg H. Johnson. T-38 jet in the background. Credit: Ken Kremer

Speaking on behalf of the entire crew he said, “We’re really happy to be here today,” said Kelly. “We got a chance to take look at the orbiter as we first flew over the field and then the over pad. It’s great to see Endeavour all ready to go again.”

Kelly was exuberant in saying that his wife, Congresswoman Gabrielle Giffords, was well enough to attend the STS-134 launch set for Friday, at 3:47 p.m. EDT.

The shuttle launch countdown officially commenced at 2 PM today. The weather outlook is 80% GO, with a 20% chance of weather violations prohibiting launch according to Shuttle weather officer Kathy Winters.

STS-134 crew arrives at KSC aboard T-38 jets. Credit : Alan Walters, awaltersphoto.com

STS-134 is the 25th and final launch of Space Shuttle Endeavour.

The primary payload aboard Endeavour is the $2 Billion Alpha Magnetic Spectrometer (AMS) ) which the crew will attach to the International Space Station. The AMS will collect cosmic rays, search for dark energy, dark matter and anti matter and seeks to determine the origin of the Universe.

Photos from the Universe Today team of Alan Walters, Ken Kremer and Michael Deep. Check back later for more photos

STS 134 crew pose for photographers at Shuttle Landing Facility on April 26. Launch is set for April 29. Mission Specialists Greg Chamitoff, Andrew Feustel, Commander Mark Kelly, Pilot Greg H. Johnson, Mission Specialist Mike Fincke and European Space Agency astronaut Roberto Vittori. Credit: Ken Kremer
STS-134 commander Mark Kelly strides across the runway of the Shuttle Landing Facility. Credit: Michael Deep, for Universe Today.
Astronauts Mark Kelly and Mike Fincke land in their T-38 at Kennedy Space Center. Credit: Michael Deep, for Universe Today.

Observing Challenge: A Gathering of Galaxies – Hickson 44

Hickson 44 by Warren Keller

[/caption]

If you turn your telescope towards Leo, you just might discover a group of galaxies which reside close to our own Milky Way – Hickson Compact Group 44. At only 60 million light years away, this diverse and interesting collection has quite a story to tell!

Some three decades ago, Canadian astronomer, Paul Hickson set about the task of completing a list of 100 galaxies clusters. But, they couldn’t be just any set of galaxies – they had to be isolated, compact and within a limited magnitude range. His purpose was to study them for unusual redshifts among their members – and to improve our knowledge of galactic evolution. From his work came the theory that perhaps all well-known galaxies once emerged from such clusters and this hypothesis also contributed mightily to our understanding of dark matter as well. What Hickson left us with is a legacy of beautiful objects that challenge not only the telescope – but the mind as well.

In this photo done by Warren Keller, you will see from 11 o’clock: NGC 3193; 3190 and 3187 at center, and 3185 at 6 o’clock. A closer look reveals two tiny galaxies PGC (Principal Galaxies Catalog) 2806871 near 8 o’clock and PGC 86788 near 5 o’clock. As you can see, this group is an interesting collection of galaxy types – from barred spiral to elliptical in structure… close enough to share material as they gravitationally interact.

While some of you may recognize the three principle players in this galactic act as the “Leo Trio”, take a closer look at barred spiral NGC 3190. It was first discovered by Sir William Herschel in 1784 and was home to two supernova events in 2002. Lurking at its heart is an active galactic nucleus (AGN), home to a super-massive black hole. While the discovery of the rare Type Ia supernova was unusual enough, adding a second similar supernova event occurring simultaneously made this galactic action even more rare. Two young x-ray emitting events, set against a record breaking amount of obscuring dust!

Perhaps the interaction with nearby NGC 3187 is the root cause? It is, after all, evolving. Studies indicate an evolutionary sequence for Hickson compact groups in which the amount of diffuse light increases with the dynamical evolution of the group. “Compact groups are associations of a few galaxies in which the environment plays an important role in galaxy evolution.” says J. A. L. Aguerri (et al). “The low group velocity dispersion favors tidal interactions and mergers, which may bring stars from galaxies to the diffuse intragroup light. Numerical simulations of galaxy clusters in hierarchical cosmologies show that the amount of the diffuse light increases with the dynamical evolution of the cluster.”

While this group of galaxies is evolving and interacting together across vast distances, you can collect them all in the same eyepiece view found about halfway between Gamma and Zeta Leonis (RA: 10h18m00.4s Dec: +21°48’44”). They are by no means easy, the faintest of which is magnitude 13, but it can be accomplished with a minimum of a 150mm telescope under dark, clear skies.

Remember, the beauty is in the challenge… and the discovery!

Mars’ Underground Atmosphere

Pitted "swiss cheese" terrain at Mars' south pole hints at sublimation of underground CO2

[/caption]

Scientists have spotted an underground reservoir near Mars’ south pole the size of Lake Superior… except that this lake is filled with frozen carbon dioxide – a.k.a. “dry ice”!

A recent report by scientists at the Southwest Research Institute in Boulder, CO reveals variations in Mars’ axial tilt can change how much carbon dioxide gets released into the atmosphere, affecting factors from the stability of water on its surface to the power and frequency of dust storms.

Thickness Map of Buried CO2 Ice Deposit
Thickness Map of Buried CO2 Ice Deposit

The Mars Reconnaissance Orbiter’s ground-penetrating Shallow Radar identified a subsurface deposit of frozen material, confirmed as carbon dioxide ice by its radar signature and visual correlation to the surface pitting seen above. As the polar surface warms during the Martian spring, underground CO2 deposits evaporate (or “sublime”) leaving behind round depressions in the frozen ground. (This has been aptly dubbed “swiss cheese terrain” by researchers on the HiRISE imaging team.)

While scientists were aware of seasonal CO2 ice layers atop the water ice this new discovery brings to light nearly 30 times more frozen CO2 than was previously believed to exist. In fact this particular deposit alone contains 80% the amount of CO2 currently present in the planet’s entire atmosphere.

The importance of this finding is how the carbon dioxide ultimately affects the global Martian climate as it freezes and thaws. When the CO2 is frozen and locked away in subsurface deposits like this, it’s not free to enter the atmosphere and do what CO2 does best: warm the planet… as well as increase atmospheric pressure. This means that liquid water cannot last as readily on the surface since it will either freeze or boil away. Also with less air pressure the strength of wind is decreased, so dust storms are less frequent and less severe.

When factored in with the axial tilt difference – and thus variations in the amount of sunlight hitting the poles – researchers’ models show that Mars’ average atmospheric pressure may at times be 75% higher than it is today.

These shifts in the orientation of the Red Planet’s axis occur on 100,000-year intervals… long by human standards but geologically very frequent. Mars may have had liquid water existing on its surface fairly recently!

Mars' south polar ice cap, seen in April 2000 by Mars Odyssey. NASA/JPL/MSSS

Although this may sound that Mars has had its own share of global warming due to CO2 emissions in its history, it must be remembered that Mars and Earth have very different atmospheric compositions. Earth’s atmosphere is much thicker and denser than Mars’, so even when doubling its CO2 content Mars’ atmosphere is still too thin and dry to create a strong greenhouse effect… especially considering that the polar caps on Mars increase cooling more than additional CO2 in the atmosphere raises global temperature. Without oceans and atmosphere to collect and distribute heat, the effect of any warming quickly radiates out into space…and eventually the planet swings back into a freeze-dried state.

“Unlike Earth, which has a thick, moist atmosphere that produces a strong greenhouse effect, Mars’ atmosphere is too thin and dry to produce as strong a greenhouse effect as Earth’s, even when you double its carbon-dioxide content.”

– Robert Haberle, planetary scientist at NASA’s Ames Research Center

Read the full news release on the NASA Missions site.

Image credit: NASA / JPL / University of Arizona

 

Did the Early Universe Have Just One Dimension?

Planck all-sky image. Credit: ESA, HFI and LFI consortia.

[/caption]

From a University of Buffalo press release:

Did the early universe have just one spatial dimension? That’s the mind-boggling concept at the heart of a theory that physicist Dejan Stojkovic from the University at Buffalo and colleagues proposed in 2010. They suggested that the early universe — which exploded from a single point and was very, very small at first — was one-dimensional (like a straight line) before expanding to include two dimensions (like a plane) and then three (like the world in which we live today).

The theory, if valid, would address important problems in particle physics.

Now, in a new paper in Physical Review Letters, Stojkovic and Loyola Marymount University physicist Jonas Mureika describe a test that could prove or disprove the “vanishing dimensions” hypothesis.

Because it takes time for light and other waves to travel to Earth, telescopes peering out into space can, essentially, look back into time as they probe the universe’s outer reaches.

Gravitational waves can’t exist in one- or two-dimensional space. So Stojkovic and Mureika have reasoned that the Laser Interferometer Space Antenna (LISA), a planned international gravitational observatory, should not detect any gravitational waves emanating from the lower-dimensional epochs of the early universe.

Stojkovic, an assistant professor of physics, says the theory of evolving dimensions represents a radical shift from the way we think about the cosmos — about how our universe came to be.

The core idea is that the dimensionality of space depends on the size of the space we’re observing, with smaller spaces associated with fewer dimensions. That means that a fourth dimension will open up — if it hasn’t already — as the universe continues to expand.

The theory also suggests that space has fewer dimensions at very high energies of the kind associated with the early, post-big bang universe.

If Stojkovic and his colleagues are right, they will be helping to address fundamental problems with the standard model of particle physics, including the following:

The incompatibility between quantum mechanics and general relativity. Quantum mechanics and general relativity are mathematical frameworks that describe the physics of the universe. Quantum mechanics is good at describing the universe at very small scales, while relativity is good at describing the universe at large scales. Currently, the two theories are considered incompatible; but if the universe, at its smallest levels, had fewer dimensions, mathematical discrepancies between the two frameworks would disappear.

Physicists have observed that the expansion of the universe is speeding up, and they don’t know why. The addition of new dimensions as the universe grows would explain this acceleration. (Stojkovic says a fourth dimension may have already opened at large, cosmological scales.)

The standard model of particle physics predicts the existence of an as yet undiscovered elementary particle called the Higgs boson. For equations in the standard model to accurately describe the observed physics of the real world, however, researchers must artificially adjust the mass of the Higgs boson for interactions between particles that take place at high energies. If space has fewer dimensions at high energies, the need for this kind of “tuning” disappears.

“What we’re proposing here is a shift in paradigm,” Stojkovic said. “Physicists have struggled with the same problems for 10, 20, 30 years, and straight-forward extensions of the existing ideas are unlikely to solve them.”

“We have to take into account the possibility that something is systematically wrong with our ideas,” he continued. “We need something radical and new, and this is something radical and new.”

Because the planned deployment of LISA is still years away, it may be a long time before Stojkovic and his colleagues are able to test their ideas this way.

However, some experimental evidence already points to the possible existence of lower-dimensional space.

Specifically, scientists have observed that the main energy flux of cosmic ray particles with energies exceeding 1 teraelectron volt — the kind of high energy associated with the very early universe — are aligned along a two-dimensional plane.

If high energies do correspond with lower-dimensional space, as the “vanishing dimensions” theory proposes, researchers working with the Large Hadron Collider particle accelerator in Europe should see planar scattering at such energies.

Stojkovic says the observation of such events would be “a very exciting, independent test of our proposed ideas.”

Sources: EurekAlert, Physical Review Letters.