A Surprising Source of Oxygen in the Deep Sea

Manganese nodules from the seafloor are often rich in metals like manganese, iron, nickel, copper, and cobalt.

I have always found Mariana’s Trench fascinating, it’s like an alien world right on our doorstep. Any visitor to the oceans or seas of our planet will hopefully get to see fish flitting around and whilst they can survive in this alien underwater world they still need oxygen to survive. Breathing in oxygen is a familiar experience to us, we inflate our lungs and suck air into them to keep us topped up with life giving oxygen. Fish are different, they get their oxygen as water flows over their gills. Water is full of oxygen which at the surface comes from the atmosphere or plants. But deep down, thousands of meters beneath the surface, it is not so easy. Now a team of scientists think that potato-sized chunks of metal called nodules act like natural batteries, interacting with the water and putting oxygen into the deep water of the ocean. 

Continue reading “A Surprising Source of Oxygen in the Deep Sea”

When Earth Danced with Polar Moons

Formation of the Moon.

The origins of the Moon have been the cause of many a scientific debate over the years but more recently we seem to have settled on a consensus. That a Mars-sized object crashed into Earth billions of years ago, with the debris coalescing into the Moon. The newly formed Moon drifted slowly away from Earth over the following eons but a new study suggests some surprising nuances to the accepted model. 

Continue reading “When Earth Danced with Polar Moons”

No Merger Needed: A Rotating Ring of Gas Creates A Hyperluminous Galaxy

This is a distant Hyper Luminous Infrared Galaxy named PJ0116-24. These galaxies experience rapid star formation that astronomers think is triggered by mergers. But this one suggests otherwise. Warm gas is shown in red and cold gas is shown in blue. Image Credit: PJ0116-24

Some galaxies experience rapid star formation hundreds or even thousands of times greater than the Milky Way. Astronomers think that mergers are behind these special galaxies, which were more abundant in the earlier Universe. But new results suggest no mergers are needed.

Continue reading “No Merger Needed: A Rotating Ring of Gas Creates A Hyperluminous Galaxy”

Can Geoengineering Protect Earth’s Icesheets?

This image shows the change in Greenland ice thickness in just one year, 2015. Almost ten years have passed, Greenland is still melting, and our GHG emissions are still rising. Is it time to use geoengineering to stall the melting? Image Credit: ESA/Planetary Visions.

It’s time to take a thorough, more serious look at using geoengineering to protect the planet’s icesheets, according to a group of scientists who have released a new report examining the issue. Glacial geoengineering is an emerging field of study that holds some hope for Earth’s diminishing glaciers and ice sheets.

Continue reading “Can Geoengineering Protect Earth’s Icesheets?”

Finally! Astronomers Find the Missing Link Between Stellar and Supermassive Black Holes

Image of a black hole candidate, and potential intermediate-mass black hole (IMBH), within the globular cluster known as Omega Centauri. (Credit: ESA/Hubble & NASA, M. Häberle)

While black holes are known as the most destructive objects in the universe, their evolution is largely shrouded in mystery. This is because while astronomers are familiar with supermassive black holes that exist at the center of galaxies like our own and black holes whose masses are less than 100 times the size of our Sun, the notion of intermediate-mass black holes (IMBHs) have largely eluded discovery. However, this might change with the recent discovery of a black hole candidate that could exist within the globular cluster, Omega Centauri, and holds the potential to be the “missing link” in scientists better understanding black hole evolution.

Continue reading “Finally! Astronomers Find the Missing Link Between Stellar and Supermassive Black Holes”

Watch an Inflatable Habitat Burst in Super Slo-Mo

Image of Sierra Space's full-scale Large Integrated Flexible Environment (LIFE®) on the test stand at NASA Marshall Space Flight Center. (Credit: Sierra Space)

Ae inflatable habitats the future of human space exploration? This is what the space-tech company, Sierra Space, hopes to achieve as they recently conducted a successful Ultimate Burst Pressure test on June 18 with its Large Integrated Flexible Environment (LIFE®) technology at NASA’s Marshall Space Flight Center. The goal of these tests is to inflate the test article until it explodes while ascertaining if the maximum pressure falls within NASA’s strict safety guidelines regarding a recommended operating pressure of 60.8 psi (maximum operating pressure of 15.2 psi times four as a safety factor). Upon explosion, Sierra Space engineers immediately found the recent test achieved 74 psi, thus exceeding NASA’s safety standards by 22 percent.

Continue reading “Watch an Inflatable Habitat Burst in Super Slo-Mo”

The Properties of 1.2 Million Solar System Objects Are Now Contained In A Machine-Readable Database

Illustration of an interstellar object approaching our solar system. Credit: Rubin Observatory/NOIRLab/NSF/AURA/J. daSilva

Academic research on solar system objects has increased dramatically over the last twenty years. However, information on most of the estimated 1.2 million objects discovered in our solar system has been spread throughout various databases and research papers. Putting all that data into a single data store and making it easy to access would allow researchers to focus on their research rather than on where to collect data. That is the idea behind the Solar System Open Database Network (SsODNet), a project by data scientists at the Observatoire de Paris.

Continue reading “The Properties of 1.2 Million Solar System Objects Are Now Contained In A Machine-Readable Database”

Evolutionary Biology: Why study it? What can it teach us about finding life beyond Earth?

Universe Today has had the incredible opportunity of exploring various scientific fields, including impact craters, planetary surfaces, exoplanets, astrobiology, solar physics, comets, planetary atmospheres, planetary geophysics, cosmochemistry, meteorites, radio astronomy, extremophiles, organic chemistry, black holes, cryovolcanism, planetary protection, dark matter, supernovae, neutron stars, and exomoons, and how these separate but unique all form the basis for helping us better understand our place in the universe.

Continue reading “Evolutionary Biology: Why study it? What can it teach us about finding life beyond Earth?”

Moon and Mars cave exploration could be easier with ReachBot

Image of the ReachBot prototype with its extended boom and grabber within a lava tube of the Lavic Lake volcanic field in the Mojave Desert. (Credit: Stanford University Biomimetics and Dextrous Manipulation Lab)

How will future robotic explorers navigate the difficult subterranean environments of caves and lava tubes on the Moon and Mars? This is what a recent study published in Science Robotics hopes to address as a team of researchers from Stanford University investigated the use of a novel robotic explorer called ReachBot, which could potentially use its unique mechanical design to explore deep caves and lava tubes on the Moon and Mars in the future.

Continue reading “Moon and Mars cave exploration could be easier with ReachBot”

Astronauts’ Muscle Loss Mimics Age-Related Muscle Loss

Researchers grew muscle cells on tiny chips then sent them to the ISS to study them. Researchers hope to develop drugs to help astronauts combat muscle atrophy during space flight. Image Credit: NASA. CC BY-SA

One of the hazards astronauts must contend with is muscle loss. The more time they spend in a microgravity environment, the more muscle loss they suffer. Astronauts use exercise to counter the effects of muscle atrophy, but it’s not a perfect solution. Researchers want to develop drugs to help, and understanding the muscle-loss process in space is a critical first step.

Continue reading “Astronauts’ Muscle Loss Mimics Age-Related Muscle Loss”