A Collapsed Martian Lava Chamber, Seen From Space

This HiRise image of Hephaestus Fossae shows a volcanic area that's collapsed into a pit. We should explore it. Image Credit: NASA/JPL-Caltech/UArizona

Lava tubes and chambers attract a lot of attention as potential sites for bases on the Moon and Mars. They provide protection from radiation, from temperature swings, and even from meteorites. They beg to be explored.

Continue reading “A Collapsed Martian Lava Chamber, Seen From Space”

Next Generation Gravitational Wave Observatories Could Detect 100-600 Solar Mass Black Hole Mergers

Simulation of merging supermassive black holes. Credit: NASA's Goddard Space Flight Center/Scott Noble
Simulation of merging supermassive black holes. New research shows how dark matter overcomes the Final Parsec Problem. Credit: NASA's Goddard Space Flight Center/Scott Noble

Humans are born wonderers. We’re always wondering about the next valley over, the next horizon, what we’ll understand next about this vast Universe that we’re all wrapped up in.

In 2015, we finally detected our first long-awaited and long-theorized gravitational wave from the distant merger of two stellar mass black holes. But now we want to know more, and only better detectors can feed our appetite.

Continue reading “Next Generation Gravitational Wave Observatories Could Detect 100-600 Solar Mass Black Hole Mergers”

White Dwarfs Could Support Life. So Where are All Their Planets?

Artist's view of old white dwarfs surrounded by planetary debris. Credit: University of Warwick/Dr Mark Garlick

Astronomers have found plenty of white dwarf stars surrounded by debris disks. Those disks are the remains of planets destroyed by the star as it evolved. But they’ve found one intact Jupiter-mass planet orbiting a white dwarf.

Are there more white dwarf planets? Can terrestrial, Earth-like planets exist around white dwarfs?

Continue reading “White Dwarfs Could Support Life. So Where are All Their Planets?”

Can There Be Double Gravitational Lenses?

The narrow galaxy elegantly curving around its spherical companion in this image is a fantastic example of a truly strange and very rare phenomenon. This image, taken with the NASA/ESA Hubble Space Telescope, depicts GAL-CLUS-022058s, located in the southern hemisphere constellation of Fornax (The Furnace). GAL-CLUS-022058s is the largest and one of the most complete Einstein rings ever discovered in our Universe. The object has been nicknamed by the Principal Investigator and his team who are studying this Einstein ring as the "Molten Ring", which alludes to its appearance and host constellation. First theorised to exist by Einstein in his general theory of relativity, this object’s unusual shape can be explained by a process called gravitational lensing, which causes light shining from far away to be bent and pulled by the gravity of an object between its source and the observer. In this case, the light from the background galaxy has been distorted into the curve we see by the gravity of the galaxy cluster sitting in front of it. The near exact alignment of the background galaxy with the central elliptical galaxy of the cluster, seen in the middle of this image, has warped and magnified the image of the background galaxy around itself into an almost perfect ring. The gravity from other galaxies in the cluster is soon to cause additional distortions. Objects like these are the ideal laboratory in which to research galaxies too faint and distant to otherwise see.
Gravitational Lens GAL-CLUS-022058s taken with NASA/ESA Hubble Space Telescope

If you, like me, have used telescopes to gaze out at the wonders of the Universe, then you too may have been a little captivated by the topic of gravitational lensing.  Think about it: how cool is it that the very universe we are trying to explore is actually providing us with telescopes to probe the darkest corners of space and time? 

The alignment of large clusters of galaxies is the usual culprit whose gravity bends distant light to give us nature’s own telescopes, but now part-time theoretical physicist Viktor T Toth poses the question, “Can there be multiple gravitational lenses lined up and can they provide a ‘communication bridge’ to allow civilisations to communicate?”

Continue reading “Can There Be Double Gravitational Lenses?”

Did Betelgeuse Consume a Smaller Star?

The red supergiant Betelgeuse. Its activity can be confounding, and new research suggests that the star could've consumed a smaller companion star. Image credit: Hubble Space Telescope. Image Credit: ALMA (ESO/NAOJ/NRAO)/E. O’Gorman/P. Kervella

What’s going on with Betelgeuse? In recent years it’s generated a lot of headlines as its luminosity has shifted dramatically several times. The red supergiant brightened by almost 50% earlier this year, triggering speculation that it may go supernova.

But new research suggests there’s something completely different happening with Betelgeuse that has nothing to do with its recent fluctuations. It may have consumed a smaller companion star.

Continue reading “Did Betelgeuse Consume a Smaller Star?”

Three Planets Around this Sunlike Star are Doomed. Doomed!

A distant Sun-like star will leave the main sequence behind, ending its life of fusion. Then it'll expand into a red giant, totally destroying its four planets. Image Credit: fsgregs Creative Commons Attribution-Share Alike 3.0 Unported

According to new research we can start writing the eulogy for four exoplanets around a Sun-like star about 57 light years away. But there’s no hurry; we have about one billion years before the star becomes a red giant and starts to destroy them.

Continue reading “Three Planets Around this Sunlike Star are Doomed. Doomed!”

New Telescopes to Study the Aftermath of the Big Bang

A photograph of a CMB-S4 detector wafer being prepared for testing in a cryostat at Lawrence Berkeley National Laboratory. Credit: Thor Swift/Lawrence Berkeley National Laboratory

Astronomers are currently pushing the frontiers of astronomy. At this very moment, observatories like the James Webb Space Telescope (JWST) are visualizing the earliest stars and galaxies in the Universe, which formed during a period known as the “Cosmic Dark Ages.” This period was previously inaccessible to telescopes because the Universe was permeated by clouds of neutral hydrogen. As a result, the only light is visible today as relic radiation from the Big Bang – the Cosmic Microwave Background (CMB) – or as the 21 cm spectral line created by the reionization of hydrogen (aka. the Hydrogen Line).

Now that the veil of the Dark Ages is being slowly pulled away, scientists are contemplating the next frontier in astronomy and cosmology by observing “primordial gravitational waves” created by the Big Bang. In recent news, it was announced that the National Science Foundation (NSF) had awarded $3.7 million to the University of Chicago, the first part of a grant that could reach up to $21.4 million. The purpose of this grant is to fund the development of next-generation telescopes that will map the CMB and the gravitational waves created in the immediate aftermath of the Big Bang.

L

Satellites Make up to 80,000 Flashing Glints Per Hour. It's a Big Problem for Astronomers

Starlink trails cut through this image of the star Albiero, in the Cygnus constellation. Credit: Rafael Schmall

Large-scale sky surveys are set to revolutionize astronomy. Observatories such as Vera Rubin and others will allow astronomers to observe how the sky changes on the scale of days, not weeks or months. They will be able to capture transient events such as supernovae in their earliest stages and will discover near-Earth asteroids we have missed in the past. At the same time, the rise of satellite constellations such as Starlink threatens to overwhelm these surveys with light pollution and could threaten their ability to succeed.

Continue reading “Satellites Make up to 80,000 Flashing Glints Per Hour. It's a Big Problem for Astronomers”

Vera Rubin Observatory Could Find Up to 70 Interstellar Objects a Year

The Vera C. Rubin Observatory is under construction at Cerro Pachon, in Chile. This image shows construction progress in late 2019. The observatory should be able to spot interstellar objects like Oumuamua. Image Credit: Wil O'Mullaine/LSST .

Astronomers have discovered two known interstellar objects (ISO), ‘Oumuamua and 21/Borisov. But there could be thousands of these objects passing through the Solar System at any time. According to a new paper, the upcoming Vera Rubin Telescope will be a fantastic interstellar object hunter, and could possibly find up to 70 objects a year coming from other star systems.

Continue reading “Vera Rubin Observatory Could Find Up to 70 Interstellar Objects a Year”

The Crab Reveals Its Secrets To JWST

The NASA/ESA/CSA James Webb Space Telescope has gazed at the Crab Nebula in the search for answers about the supernova remnant’s origins. Webb’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) have revealed new details in infrared light. Similar to the Hubble optical wavelength image released in 2005, with Webb the remnant appears to consist of a crisp, cage-like structure of fluffy red-orange filaments of gas that trace doubly ionised sulphur (sulphur III). Within the remnant’s interior, yellow-white and green fluffy ridges form large-scale loop-like structures, which represent areas where dust particles reside. The area is composed of translucent, milky material. This material is emitting synchrotron radiation, which is emitted across the electromagnetic spectrum but becomes particularly vibrant thanks to Webb’s sensitivity and spatial resolution. It is generated by particles accelerated to extremely high speeds as they wind around magnetic field lines. The synchrotron radiation can be traced throughout the majority of the Crab Nebula’s interior. Locate the wisps that follow a ripple-like pattern in the middle. In the centre of this ring-like structure is a bright white dot: a rapidly rotating neutron star. Further out from the core, follow the thin white ribbons of the radiation. The curvy wisps are closely grouped together, following different directions that mimic the structure of the pulsar’s magnetic field. Note how certain gas filaments are bluer in colour. These areas contain singly ionised iron (iron II). [Image description: An oval nebula with a complex structure against a black background. On the oval's exterior lie curtains of glowing red and orange fluffy material. Interior to this outer shell lie large-scale loops of mottled filaments of yellow-white and green, studded with clumps and knots. Translucent thin ribbons of smoky white lie within the remnant’s interior, brightest toward its centre.]
The Crab Nebula by JWST. Credit: NASA/ESA/JWST

The Crab Nebula – otherwise known as the first object on Charles Messier’s list of non-cometary objects or M1 for short – has never really failed to visually underwhelm me! I have spent countless hours hunting down this example of a supernova remnant and found myself wondering why I have bothered. Yet here I am, after decades of looking at it, and I still find it one of the most intriguing objects in the sky.

Never has this interest been piqued more than right now after another mirror-smashing beauty of an image from the James Webb Space Telescope, and it’s already found its way to my mobile phone wallpaper!

Continue reading “The Crab Reveals Its Secrets To JWST”