[/caption]
KENNEDY SPACE CENTER – Unprecedented and spectacular photos showing a US Space Shuttle Orbiter docked to the International Space Station (ISS) were snapped just hours ago and transmitted live back to ground stations and viewers on Earth as a Soyuz capsule with three space flyers departed from the station at 5:35 p.m EDT on the first leg of their journey back to Earth. And the best is yet to come.
Check out the photo galley of historic black and white gems captured from an engineering docking camera attached to the nose of the Russian Soyuz capsule that undocked this evening (May 23) from the ISS. These historic photos are the first ever showing a shuttle joined to the massive orbiting complex.
As the Soyuz was backing away from the Russian-built Rassvet module, Italian Astronaut Paolo Nespoli was busily snapping first of its kind high resolution color photos and videos of Space Shuttle Endeavour attached to the ISS.
The entire complex was simultaneously rotated 130 degrees to provide the best possible view of the whole shuttle-station stack. The combined stack weighs more than a million pounds
Nespoli had about 30 minutes to collect high resolution digital imagery from a viewing port inside the habitation module of the Soyuz spacecraft that burns up on reentry. He then removed the cards from the cameras and floated back into the Soyuz descent module.
NASA and Russia expect to release high resolution digital imagery on Tuesday or Wednesday.
The three person Expedition 27 crew comprising of Commander Dmitry Kondratyev and Flight Engineers Cady Coleman and Paolo Nespoli landed safely in their Soyuz spacecraft on the Kazakhstan steppe Monday at 10:27 p.m. (8:27 a.m. on May 24 local time) at a site southeast of the town of Dzhezkazgan.
Shuttle Endeavour is in the middle of the 16 day STS-134 mission and delivered the $2 Billion Alpha Magnetic Spectrometer to the ISS. The AMS is a particle physics detector searching for the invisible Universe and seeks to elucidate its birth and evolution. The all veteran crew of 6 is led by Shuttle Commander Mark Kelly.
Currently, astronomers have two competing models for planetary formation. In one, the planets form in a single, monolithic collapse. In the second, the core forms first and then slowly accretes gas and dust. However, in both situations, the process must be complete before the radiation pressure from the star blows away the gas and dust. While this much is certain, the exact time frames have remained another matter of debate. It is expected that this amount should be somewhere in the millions of years, but low end estimates place it at only a few million, whereas upper limits have been around 10 million. A new paper explores IC 348, a 2-3 million year old cluster with many protostars with dense disks to determine just how much mass is left to be made into planets.
The presence of dusty disks is frequently not directly observed in the visible portion of the spectra. Instead, astronomers detect these disks from their infrared signatures. However, the dust is often very opaque at these wavelengths and astronomers are unable to see through it to get a good understanding of many of the features in which they’re interested. As such, astronomers turn to radio observations, to which disks are partially transparent to build a full understanding. Unfortunately, the disks glow very little in this regime, forcing astronomers to use large arrays to study their features. The new study uses data from the Submillimeter Array located atop Mauna Kea in Hawaii.
To understand how the disks evolved over time, the new study aimed to compare the amount of gas and dust left in IC 348’s disc to younger ones in star forming regions in Taurus, Ophiuchus, and Orion which all had ages of roughly 1 million years. For IC 348, the team found 9 protoplanetary disks with masses from 2-6 times the mass of Jupiter. This is significantly lower than the range of masses in the Taurus and Ophiuchus star forming regions which had protoplanetary clouds ranging to over 100 Jupiter masses.
If planets are forming in IC 348 at the same frequency in which they form in systems astronomers have observed elsewhere, this would seem to suggest that the gravitational collapse model is more likely to be correct since it doesn’t leave a large window in which forming planets could accrete. If the core accretion model is correct, then planetary formation must have begun very quickly.
While this case don’t set any firm pronouncements on which model of planetary formation is dominant, such 2-3 million year old systems could provide an important test bed to explore the rate of depletion of these reservoirs.
An incredible set of images are beaming back from the Cassini spacecraft as it orbits Saturn, snapping away at the sights. The moons Titan and Enceladus snuggling up together in front of Saturn’s rings creates an amazing view, especially when they are all lined up together. These were taken on May 21, 2011. I’ve posted some of what I think are the most amazing, below, or you can see the whole set at the Cassini raw images page. When the Cassini imaging team gets a chance to process (and colorize) these, they’ll likely go down as some of the most representative images from the entire mission.
Today at the American Astronomical Society conference in Boston, the Kepler team announced the confirmation of a new rocky planet in orbit around Kepler-10. Dubbed Kepler-10c, this planet is described as a “scorched, molten Earth.”
2.2 times the radius of Earth, Kepler-10c orbits its star every 45 days. Both it and its smaller, previously-discovered sibling 10b are located too close to their star for liquid water to exist.
Kepler-10c was validated using a new computer simulation technique called “Blender” as well as additional infrared data from NASA’s Spitzer Space Telescope. This method can be used to locate Earth-sized planets within Kepler’s field of view and could also potentially help find Earth-sized planets within other stars’ habitable zones.
This is the first time the team feels sure that it has exhaustively ruled out alternative explanations for dips in the brightness of a star… basically, they are 99.998% sure that Kepler-10c exists.
The Kepler-10 star system is located about 560 light-years away near the Cygnus and Lyra constellations.
It’s been just over two months since the MESSENGER spacecraft successfully entered orbit around Mercury, back on March 18, and it’s been enthusiastically returning image after image of our solar system’s innermost planet at a unprecedented rate. Which, of course, is just fine with us!
The image above shows Mercury’s southern hemisphere and the bright rays of the 50-km-wide crater Han Kan. It was acquired on May 17, 2011.
Below are more recent images from MESSENGER… some of which show regions and features that have never previously been mapped – or even named!
MESSENGER’s orbit about Mercury is highly elliptical, taking it 200 kilometers (124 miles) above its northern surface at the closest pass and 15,193 kilometers (9,420 miles) away from the south pole at furthest. Check out this video showing an animation of how a typical MESSENGER orbit would be executed.
Image credits: Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington.
The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft’s seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System’s innermost planet. During the one-year primary mission, MDIS is scheduled to acquire more than 75,000 images in support of MESSENGER’s science goals.
Videographers David Gonzales and Mike Deep filmed Endeavour’s final launch with two cameras from the Kennedy Space Center Press Site, and put this video together for Universe Today. They did a great job of capturing what a shuttle launch sounds like, from the countdown, to the cheering of the crowd, to the crackling and popping of the launch itself. Continue reading “The Sights and Sounds of Endeavour’s Final Launch”
I love these student projects that send a camera via a balloon high in the atmosphere to film the view of Earth below. Here’s another from a group of German students who were able to film in HD from an altitude of more than 100,000 ft. (30,480 meters). Enjoy the music, too.
“Our challenge was to survive ambient air pressures as low as 1/100th of an atmosphere, temperatures as low as -60°C and finally to locate and recover the Camera,” Tobias Lohf wrote UT. “We had a HD-Cam, GPS tracker and a heating pad on board, and all the construction had a total weight of about 1kg.”
The rest of the team included Marcel Dierig, Tobias Stodieck, Tristan Eggers and Marvin Rissiek and they hope to inspire other students to try the same project. “All you need need is a camera, weather balloon and Duct Tape,” they said.
KENNEDY SPACE CENTER: Get ready for the ultimate photo op in space – set for the International Space Station joined to Space Shuttle Endeavour and topped off by Planet Earth as the backdrop.
And it’s coming up momentarily because of an unexpected and “unique opportunity” that’s also taking place at nearly the last possible moment in the life of the soon to be retired Space Shuttle program.
On Monday, May 23, Italian Astronaut Paolo Nespoli will snap the first ever photos and video of a US Space Shuttle orbiter while it is simultaneously still docked to the International Space Station, NASA officials just announced on Friday, May 19.
Video Caption: This computer generated animation depicts the view the Soyuz crew will see as they depart from the International Space Station (upper left) on May 23, 2011 at 5:32 p.m. EDT. Italian Astronaut Paolo Nespoli will capture an incredible and first ever imagery of the stacked station/shuttle complex with a space shuttle orbiter; the Endeavour. Bottom view shows side view of the Soyuz departing the ISS. Credit: NASA
Nespoli will capture the dramatic and historic imagery – in a newly devised plan – while he is departing the “Shuttle- Station stack” aboard a Russian Soyuz spacecraft and heading for a landing back on Earth with two crewmates barely 4 hours later in Kazakhstan.
“We have a unique opportunity. We are calling this Soyuz undock with imagery,” said Kenneth Todd, chair of NASA’s space station mission management team. “We are not calling this a Soyuz flyaround or flyabout.”
“This is going to be a great opportunity for the spaceflight community.”
After months of high level international negotiations since the STS-133 mission, NASA and Russian space officials from the space shuttle and space station teams have finally agreed on a arrangement for utilizing a crewed Soyuz vehicle to record the first ever photos showing a shuttle while still docked to the massive orbiting outpost in the same field of view.
The chance to do the shuttle- station photo documentation in this way only became possible when the launch of Space Shuttle Endeavour was scrubbed on April 29 and the resulting delayed launch of the STS-134 mission on May 16 fortuitously afforded an overlapping time period that coincided with the Soyuz TMA-20 crew departure.
The photo opportunity will take place under what’s called a dual docked operations scenario whereby the Soyuz is undocked while a shuttle is still attached to the ISS.
“With 100 percent consensus, we approved this change to the baseline mission to go add this photo documentation task as part of the Soyuz TMA-20 undock,” Todd explained.
In order to accommodate the extra time required to accomplish the photo shoot, the Soyuz TMA-20 capsule will undock from the ISS one orbit earlier than originally scheduled, about 90 minutes, at 5:32 p.m. EDT.
Nespoli is departing with ISS Expedition 27 commander and Russian cosmonaut Dimitry Kondratyev and NASA astronaut Catherine “Cady” Coleman. They will be completing a nearly six month stint in space aboard the ISS.”
“After the Soyuz undocks, they will back out to about 200 meters,” explained Courtney McMillan, STS-134 Station Team 4 Flight Director. “You will see they are a little bit above the velocity vector, above the station, and that is to keep the sun out of the pilot’s eyes.”
“After they get to the station keeping point, ISS will begin to maneuver, turning 130 degrees at 0.2 degrees per second.” The attitude was designed to provide the best perspective of the ISS and Endeavour.
“It will take 15 minutes to bring the whole stack around to get a side view and a really good view of Endeavour. This is an unusual attitude for the station to fly during a mated mission and people have done a lot of work to make sure this is a good thing to be doing. They have scrutinized the issue and are very comfortable with the plan.”
The station move will be done using thrusters on the Russian Segment service module – named Zvezda – and the thrusters on the docked Progress 42P vehicle, an unmanned Russian cargo ship. See diagram below.
Nespoli will have to float into the Soyuz vehicles forward habitation module – from his seat in the central descent module – and then snap the photo and video imagery through the modules windows. He will have a direct line of sight to the stack.
Paolo will have roughly 30 minutes time to collect all the imagery of the combined space complex during the photo survey, starting at about 5:50 p.m. EDT.
Then he will float back out of the habitation module, carefully seal the hatches in between and take his seat in the descent module.
The habitation module burns up in Earth orbit after the modules separate in preparation for the Soyuz’s deorbit and scorching reentry into Earth’s atmosphere.
Since the Soyuz will be pitched up during the undocking sequence, breathtaking views of Earth in the background of the “Shuttle-
Station stack” are expected.
The goal is to get good archival imagery of the space station stack with the shuttle attached. In addition to the gee whiz factor there are good reasons from an engineering perspective to record this imagery to assess the condition of the orbiting complex, NASA managers said.
“Future generations will look back on their history and look back at what we accomplished between these two very, very large programs – the shuttle and the space station – and realize it was amazing what we accomplished with the technology available at the time.”
“These pictures will be in textbooks to show what we did”, said Todd.
Exactly when the digital photos and video will be available for all to see is still to be determined. NASA and Russian space officials are discussing the details of when and how to distribute the imagery. The Soyuz is not equipped to transmit the imagery in real time.
“We hope to start seeing the photos and videos within a day of landing”, said Todd.
Most gamma-ray bursts come in two flavors. Firstly, there are long duration bursts which form in dense star-forming regions and are associated with supernovae – which would understandably generate a sustained outburst of energy. The technical definition of a long duration gamma-ray burst is one that is more than two seconds in duration – but bursts lasting over a minute are not unusual.
Short duration gamma-ray bursts more often occur in regions of low star formation and are not associated with supernovae. Their duration is technically less than 2 seconds, but a duration of only a few milliseconds is not unusual. These are assumed to result from collisions between massive compact objects – perhaps neutron stars or black holes – producing a short, sharp outburst of energy.
But there are also rare instances of gamma-ray bursts that don’t really fill either category. GRB 060614 is such a beast – and has been referred to as a hybrid burst. It had a long duration (102 seconds) but was not associated with a supernova. This finding was significant enough to warrant an article in Nature – with the lead author Gehrels stating ‘This is brand new territory; we have no theories to guide us.’
We should be grateful that no-one decided to call it a dark burst. And we are yet to see another such confirmed hybrid gamma-ray burst that might verify whether these are hybrid bursts are really something extraordinary.
Nonetheless, Retter and Heller have suggested we should consider the possibility that GRB 060614 might have been a white hole. A white hole is a theoretical entity – and arguably just an artifact of the mathematics of general relativity. Assuming a black hole is an object from which nothing can escape – then its symmetrical opposite would be a white hole into which nothing can enter – but which can radiate light and from which matter can and does escape.
Arguably the whole idea just arises because general relativity abhors sharp edges. So the argument goes that the space-time continuum should ideally extend indefinitely – being curved by massive objects, but never brought to an edge. However, black holes represent a pinch in space-time where everything is supposedly dragged into a point-like singularity. So, one solution to this problem is to suggest that a black hole is not an interruption to the continuum, but instead the space-time around a black hole is drawn into a narrow-necked funnel – essentially a wormhole – which then feeds through to a white hole somewhere else.
Being opposites, a black hole in the present would be connected to a white hole in the past – perhaps a white hole that existed in the early universe, emitting light and matter for a period and then exploding – kind of like a film of the formation of a black hole run backwards. It’s been suggested that such white holes might have created the first anisotropies in the early isotropic universe – creating the ‘clumpiness’ that later led to galaxies and galaxy clusters.
Alternatively, the Big Bang might be seen as the ultimate white hole which expelled a huge amount of mass/energy in one go – and any subsequent white holes might then be ‘lagging cores’ or Small Bangs.
There are substantial theoretical problems with white hole physics though – for example, the matter it ejects should immediately collapse back down on itself through self-gravity – meaning it just becomes a black hole anyway, or perhaps it explodes. If the latter possibility is correct, maybe this is one possible explanation of GRB 060614 seen back in 2006. But it’s probably best to wait for another hybrid burst to appear and get some more data before getting too carried away here.
It was a busy launch day around the world on Friday. Above, the Ariane 5 rocket carrying the ST-2 and GSAT-8 communications satellites launched from Kourou, French Guiana, and below, about an hour and a half earlier, a Proton rocket blasted off from the Baikonur Cosmodrome in Kazakhstan bringing a Telstar 14R satellite to orbit. The Telstar satellite will provide communications services over the United States, Brazil and other parts of South America for Telesat of Canada, and the ST 2 will provide fixed and mobile voice and Internet to Asia and the Middle East.