When did the First Continents Appear in the Universe?

Continents might be necessary for life, especially complex life. This image shows super-continent Pangaea during the Permian period (300 - 250 million years ago). Credit: NAU Geology/Ron Blakey

On Earth, continents are likely necessary to support life. Continents ‘float’ on top of the Earth’s viscous mantle, and heat from the planet’s core keeps the mantle from solidifying and locking the continents into place.

The core is hot because of the presence of radioactive elements that came from neutron star collisions. It should be possible to calculate when the first continents formed in the Universe.

So that’s what one researcher did.

Continue reading “When did the First Continents Appear in the Universe?”

It’s Like Looking at the Infant Sun: Webb Captures Image of an Energetic Young Star

NASA’s James Webb Space Telescope’s high resolution, near-infrared look at Herbig-Haro 211 reveals exquisite detail of the outflow of a newly forming young star, an infantile analogue of our Sun. Image Credit: ESA/Webb, NASA, CSA, Tom Ray (Dublin)
NASA’s James Webb Space Telescope’s high resolution, near-infrared look at Herbig-Haro 211 reveals exquisite detail of the outflow of a newly forming young star, an infantile analogue of our Sun. Image Credit: ESA/Webb, NASA, CSA, Tom Ray (Dublin)

Ever wondered what our young Sun might have looked like in its infancy some five billion years ago?

The audacious JWST has captured an image of a very young star much like our young Sun, though the star itself is obscured. Instead, we see supersonic jets of gas. Young stars can blast out jets of material as they form, and the jets light up the surrounding gas. The luminous regions created by the jets as they slam into the gas are called Herbig-Haro Objects.

Continue reading “It’s Like Looking at the Infant Sun: Webb Captures Image of an Energetic Young Star”

SpaceX Test Fires a Raptor Engine, Simulating a Lunar Landing

A Raptor Vacuum engine was successfully cold-started during a test in August 2023. Via SpaceX.

When NASA astronauts return to the surface of the Moon in the Artemis III mission, the plan is to use a modified SpaceX Starship as their lunar lander. NASA announced last week that SpaceX has now demonstrated an important capability of the vacuum-optimized Raptor engine that will be used for the lander: an extreme cold start.  

A test last month successfully confirmed the engine can be started in the frigid conditions of space, even when the vehicle has spent an extended time in space, where temperatures will drop lower than a shorter low-Earth orbit mission. The Raptor vacuum engine was chilled to mimic conditions after a long coast period in space, and then was successfully fired.  

Continue reading “SpaceX Test Fires a Raptor Engine, Simulating a Lunar Landing”

Helicopters Could Map the Magnetic Fields on Mars

Artist illustration of how a magnetic field could have looked on ancient Mars. (Credit: NASA/JPL-Caltech)

A recent study published in The Planetary Science Journal examines how helicopters equipped with a magnetometer could be used to conduct magnetic field investigations within the crust of Mars, providing important insights into the present characteristics and early evolution of the Red Planet. This study comes as NASA’s Ingenuity helicopter continues breaking records and making history as the first powered aerial explorer on another planet, along with the recently expired NASA InSight lander using its own magnetometer to measure the crustal magnetic field.

Continue reading “Helicopters Could Map the Magnetic Fields on Mars”

A Collection of New Images Reveal X-Rays Across the Universe

NASA/CXC/SAO, JPL-Caltech, MSFC, STScI, ESA/CSA, SDSS, ESO.

One of the miracles of modern astronomy is the ability to ‘see’ wavelengths of light that human eyes can’t. Last week, astronomers put that superpower to good use and released five new images showcasing the universe in every wavelength from X-ray to infrared.

Combining data from both Earth- and ground-based telescopes, the five images reveal a diverse set of astronomical phenomena, including the galactic centre, the death throes of stars, and distant galaxies traversing the cosmos.

Continue reading “A Collection of New Images Reveal X-Rays Across the Universe”

The Milky Way's Disk is Warped. Is That Because our Dark Matter Halo is Tilted?

Illustration of the Milky Way's warped shape. Credit: ESA/Stefan Payne-Wardenaar

It’s difficult to determine the shape of our galaxy. So difficult that only in the last century did we learn that the Milky Way is just one galaxy among billions. So it’s not surprising that despite all our modern telescopes and spacecraft we are still mapping the shape of our galaxy. And one of the more interesting discoveries is that the Milky Way is warped. One explanation for this is that our galaxy has undergone collisions, but a new study argues that it’s caused by dark matter.

Continue reading “The Milky Way's Disk is Warped. Is That Because our Dark Matter Halo is Tilted?”

Tiny Swarming Spacecraft Could Establish Communications with Proxima Centauri

Swarm of laser-sail spacecraft leaving the solar system. Credit: Adrian Mann

Achieving interstellar travel has been the dream of countless generations, but the challenges remain monumental. Aside from the vast distances involved, there are also the prohibitive energy requirements and the sheer cost of assembling spacecraft that could survive the trip. Right now, the best bet for achieving an interstellar mission within a reasonable timeframe (i.e., a single person’s lifetime) is to build gram-scale spacecraft paired with lightsails. Using high-power laser arrays, these spacecraft could be accelerated to a fraction of the speed of light (relativistic speeds) and reach nearby stars in a few decades.

There are a handful of major projects, like Breakthrough Starshot, that hope to leverage this technology to create spacecraft that could reach Alpha Centauri in a few decades (instead of centuries). This technology also presents other opportunities, like facilitating communications across interstellar distances. This is the idea recently by a team of researchers led by the Initiative for Interstellar Studies (i4is). In a recent paper, they recommended that a swarm of gram-scale spacecraft could rely on their launch laser to maintain optical communications with Earth.

Continue reading “Tiny Swarming Spacecraft Could Establish Communications with Proxima Centauri”

A New Technique Confirms the Universe is 69% Dark Energy, 31% Matter (Mostly Dark)

This NASA Hubble Space Telescope image shows the distribution of dark matter in the center of the giant galaxy cluster Abell 1689, containing about 1,000 galaxies and trillions of stars.
This NASA Hubble Space Telescope image shows the distribution of dark matter in the center of the giant galaxy cluster Abell 1689, containing about 1,000 galaxies and trillions of stars.

How much “stuff” is there in the Universe? You’d think it would be easy to figure out. But, it’s not. Astronomers add up what they can detect, and still find there’s more to the cosmos than they see. So, what’s “out there” and how do they account for it all?

Continue reading “A New Technique Confirms the Universe is 69% Dark Energy, 31% Matter (Mostly Dark)”

A New Observatory Will Spot Core-Collapse Supernovae Before They Explode

Jiangmen Underground Neutrino Observatory (JUNO) under construction. Credit: CGTN

The thing about a supernova is that you never know when it might occur. Supernovae are triggered either by a collision with another star or when the interior of a massive star becomes depleted of nuclear fuel and begins a rapid collapse. Neither of these show any major optical changes before the explosion, so we are left to scan the sky in the hopes of catching one in its early stages. But that could soon change.

Continue reading “A New Observatory Will Spot Core-Collapse Supernovae Before They Explode”

If Astronomers See These Chemicals in a Planet’s Atmosphere, There’s Likely an Advanced Civilization There

Artist rendition of a potential water-world exoplanet that might support advanced civilizations. Such life could advertise its existence via technosignatures from industrial or other activities. (Credit: ESA / Hubble / M. Kornmesser)
Artist rendition of a potential water-world exoplanet that might support life. Scientists could determine whether to explore this world based on its planetary entropy production. (Credit: ESA / Hubble / M. Kornmesser)

In an age of ever-growing numbers of exoplanets circling other stars, it’s natural that astronomers search for signatures of advanced civilizations. Such signatures may have biological or technological origins.

Continue reading “If Astronomers See These Chemicals in a Planet’s Atmosphere, There’s Likely an Advanced Civilization There”