Japan’s Trash-laden HTV-2 Undocks from ISS

Japan's Kounotori 2 –or ‘White Stork’ – cargo carrier as it arrived at the ISS in January. Credit: Paolo Nespol/NASA

[/caption]

Japan’s HTV-2 Kounotori resupply ship undocked from the International Space Station at 15.45 GMT on March 28, and will burn up in Earth’s atmosphere sometime early Wednesday March 31. Back in January, the craft brought five metric tons of equipment and supplies to the station, but now it is loaded with trash and unneeded equipment and packing materials. Most of the HTV will likely disintegrate as it passes through the atmosphere, but any pieces left over will find a watery grave in a remote area in the Central Pacific. But sensors on board the HTV-2 will provide data on how the craft behaves during its fiery demise.

The Re-entry Breakup Recorder (REBR) will record temperature, acceleration, rotational rate and other data.

The second HTV from Japan arrived at the ISS on January 27 carrying its cargo of food, water supplies, and equipment. Japan expects to send another seven cargo ships to the station by 2015, with the next one scheduled to arrive in January 2012.

The ISS crew grappled HTV-2 with the Canadarm 2, undocked it from the station and then maneuvered the HTV into a release position about 30 feet below the station. The Space Station Integration and Promotion Center in Tsukuba, Japan was able to handle the commands to activate and check out the freighter’s guidance, navigation and control systems. Because of the March 11 earthquake in Japan, controls of the HTV and Japan’s Kibo laboratory was temporarily handed over to NASA in Houston, but the center is now fully restored for full commanding, telemetry and voice capabilities for the ISS.

The cargo ship will enter the atmosphere on Wednesday at 03.09 GMT, and any remaining fragments will fall into the Pacific Ocean 31 minutes later.

So long Konotori, and we thank you.

Amazing Image: Kepler’s Transiting Exoplanets

Visualization of Kepler's planet candidates shown in transit with their parent stars. Credit: Jason Rowe/Kepler Mission/NASA

[/caption]

Wow. This remarkable visualization shows every Kepler planetary candidate host star with its transiting companion in silhouette. Jason Rowe from the Kepler science team created the image, and the sizes of the stars and transiting companions are properly scaled. For reference, Rowe has included the Sun with a transiting Earth and Jupiter (below the top row on the right by itself.) The largest star is 6.1 times larger that the Sun and the smallest stars are estimated to be only 0.3 times the radius of the Sun. On his Flickr page, Rowe says the colors of the stars represent how the eye would see the star outside of the Earths atmosphere. “Stars have been properly limb darkened and the companions have been offset relative to one another to match the modeled impact parameter. Some stars will even show more than one planet!” he writes.

For more information and high resolution versions of the image, see Jason Rowe’s Flickr page. This image is featured on today’s (March 29, 2011) Astronomy Picture of the Day.

How to Wake Up an Astronaut: Vote Now

From folk to boogey-woogey to cute kids singing, you’ve got 10 original choices for which song should be the winner of NASA’s Space Rock contest in the Original Songs category. While I’m personally bummed that my song didn’t get chosen as a finalist, the ten choices are creative, fun and really awesome. It’s great to know that there are other songwriters out there who are passionate about space exploration, too! NASA said 1,350 original songs were submitted, including 693 from 47 states in the US, 105 from Canada, and 552 from 61 other countries. The two songs with the most votes will be the first original songs chosen by the public to be played as wakeup music for a shuttle crew, and will be played during the STS-134 mission, sending a ‘rise and shine’ to space shuttle Commander Mark Kelly and his five crewmates during their mission to the International Space Station. Voting runs from Tuesday, March 29 through launch day, which currently is targeted for April 19.

Listen to the songs and vote at the Space Rock webpage.

And you can still participate in the “Face in Space” project, which allows you to send a picture to space via an electronic transfer. During Discovery’s mission, more than 194,000 images flew in space. So far, almost 117,000 images have been submitted to fly aboard shuttle Endeavour’s STS-134 flight. To send your face to space aboard Endeavour, or Atlantis on the STS-135 mission targeted for June, visit the Face in Space Website.

Fancy doing a Messier Marathon this Weekend?

The Messier Catalog
The Messier Catalog Credit: SEDS

[/caption]

If you are new to astronomy, you may ask “what is a Messier Marathon and how do I do one?”

Basically a Messier Marathon is an all night (Dusk til Dawn) observing session held around mid March/ early April every year, where an observer attempts to see all, or as many of the 110 Messier objects as listed by Charles Messier.

The Messier list includes: Nebulae, Galaxies, Star clusters, Supernovae and many other deep sky objects. All of the objects in the Messier list are observable with small amateur telescopes and many of the objects are observable with binoculars.

The reason why Messier marathons take place from mid March to early April is because this is when all of the objects are visible in one evening. Other times of the year aren’t suitable as some of the objects will be in daylight or below the horizon etc.

You don’t have to be an astronomy ace or a seasoned astronomer to do a Messier marathon, but you will need a good telescope to see all of the objects. You don’t even need to do a full Messier marathon as many people do half marathons and depending on your location, or when you observe, you may not be able to see all 110 objects as there is a very tight window of opportunity and higher latitude observers do lose a couple of objects below the horizon.

Timing is key to enable you to see as many of 110 messier objects as possible. Many astronomers put tables and even star charts on the internet to help observers see as many objects as possible.

Observing starts at dusk and ends after dawn and on average each object gets about 5 minutes of observing time before you have to move onto the next one. There can be a short respite half way through the observing session for food and rest, but this depends on the order and success of the objects you are viewing?

Before starting your night of viewing Charles Messier’s wonders, make sure you have all your equipment ready, are dressed warm as it will get cold, have all your charts and viewing tables ready. It also helps to have a hot drink and something nice to eat.

The best dates this year for doing a Messier Marathon have passed and the sky was drenched with the glow of the full moon, but we still have early April. Good luck.

Charles Messier (26 June 1730 – 12 April 1817) was a French astronomer most notable for publishing an astronomical catalogue consisting of deep sky objects such as nebulae and star clusters that came to be known as the 110 “Messier objects”. The purpose of the catalogue was to help astronomical observers, in particular comet hunters such as himself, distinguish between permanent and transient objects in the sky.

Israel and Russia Sign Space Cooperation Agreement

Officials from Israel and Russia sign a space cooperation agreement. Credit: Israeli governmental news office.

[/caption]

The Israeli government has signed an agreement with Roscosmos, the Russian space agency, for cooperation in space for peaceful purposes. Areas where the two countries may work together are exploration and research, remote sensing of Earth from space, materials science, space biology and medicine, satellite navigation technology, and launch services. Israel also has similar agreements with NASA and the ESA.

The two countries have already been cooperating extensively in development of high-tech hardware, and Russia has purchased Israeli-made unmanned drones for its security services.

One of the goals of the Israeli Space Agency is to promote innovative scientific projects based on international collaboration.

“The trend of international cooperation and unification of forces for action in space is more and more dominant and there are now several major multinational projects like the space station, handling problems and global warming climate research, spacecraft operation… physics and solar system exploration,” said Dr. Zvi Kaplan, head of the Israeli Space Agency. “We thank all of the organizations that were active in achieving the agreement, including the Foreign Ministry and the Ministry of Justice.”

Those present at the signing included Kaplan, Anatoly Perminov, head of Roscosmos, Israeli Prime Minister Benjamin Netanyahu and Minister of Science and Technology Professor Daniel Hershkowitz, Russian Ambassador to Israel, Peter Stganye, and experts from both countries in space.

According to the Israeli science news website Hayadan, Netanyahu said that the combination of Russia’s most developed industrial and Israel’s sophisticated technology will provide for improvements and changes for both countries in space.

“The road was indeed was short, but the desire to work together existed, and last year the two sides accelerated the pace, because of the desire to get started,” said Menachem Grinblum, Director General, Ministry of Science and Technology. “We expect the agreement will be translated into joint action research institutions and industries in both countries.”

Source: Hayadan, with special thanks to editor Avi Blizovsky.

Everyday Astronauts

Astronaut Fill'er Up! Image credit and copyright: Hunter Freeman. Used by permission.

[/caption]

What do astronauts do when they aren’t in space? Commercial photographer Hunter Freeman’s images all seem to have a bit of whimsy included, and his series of suited astronauts doing everyday things us regular humans may find humdrum will bring a smile to your face, guaranteed. Make sure you look for the small, very relevant details! Check out the entire series at this link, and learn more about his work at his website.

Astrophoto: A Mexican Orion

The Orion Nebula from Paredón, Coah, Mexico. Credit: César Cantú

[/caption]

This stunning new image of the Orion Nebula has a bit of salsa to it! César Cantú of the Chiledog Observatory in Monterrey, Mexico took this image earlier this month. But he had to travel to Paredón, Coah in Mexico to escape the fog to get this great image. Here are the specs: Orion Atlas mount, 90mm Astrotech APO telescope camera; LRGB QSI540, 3 hours with 600 seconds subs. But the fog tried to follow, César told us. “The intention was 4 hours, but the fog did not allow it,” he said. See more of his great images at this website, Astronomía Y Astrofotografía.

Carnival of Space #190

This week’s Carnival of Space is hosted by Paul Gilster over at Centauri Dreams.

Click here to read the Carnival of Space #190.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

Opportunity Rover Completes Exploration of fascinating Santa Maria Crater

Yuma Outlook at Santa Maria Crater on Sol 2476, Jan 10, 2011. Opportunity arrived at the hydrated mineral deposits located here at the southeast rim of the crater. Self portrait of Opportunity at left, casts shadow of rover deck and mast at right. Credit: NASA/JPL/Cornell, Marco Di Lorenzo, Kenneth Kremer High resolution version on APOD, Jan. 29, 2011 ; http://apod.nasa.gov/apod/ap110129.html

[/caption]

NASA’s long lived Opportunity Mars rover has completed a three month long exploration of Santa Maria crater along the trail towards its biggest target ever, Endeavour crater, some 22 kilometers in diameter. Santa Maria has simultaneously offered a series of stunning vistas and a scientific bonanza as a worthy way station in the rovers now seven year long overland expedition across the Martian plains of Meridiani Planum.

Opportunity made landfall at the western edge of Santa Maria on Dec. 15, 2010 (Sol 2450) after a long and arduous journey of some 19 kilometers since departing from Victoria Crater nearly two and one half years ago in September 2008. Santa Maria is the largest crater that the rover will encounter on the epic trek between Victoria and Endeavour.

Robotic arm at work on Mars on Sol 2513, Feb 17, 2011. Opportunity grinds into rock target Luis De Torres’ with the RAT. Credit: NASA/JPL/Cornell
The science team decided that Santa Maria would be the best location for an intermediate stop as well as permit a focused science investigation because of the detection of attractive deposits of hydrated minerals. The stadium sized and oval shaped crater is some 80 to 90 meters wide (295 feet) and about nine meters in depth.

Opportunity has since been carefully driven around the lip of the steep walled crater in a counterclockwise direction to reach the very interesting hydrated sulfates on the other side. The rover made several stops along the way to collect long baseline high resolution stereo images creating 3 D digital elevation maps and investigate several rocks in depth.

Opportunity was directed to Santa Maria based on data gathered from Mars orbit by the mineral mapping CRISM spectrometer – onboard the Mars Reconnaissance Orbiter (MRO) – which indicated the presence of exposures of water bearing sulfate deposits at the southeast rim of the crater.

Opportunity rover panoramic photomosaic near lip of Santa Maria Crater on Sol 2519, Feb. 23, 2011. Opportunity drove to exposed rock named Ruiz Garcia to investigate hydrated mineral deposits located here at southeast portion of crater. Credit: NASA/JPL/Cornell, Kenneth Kremer, Marco Di Lorenzo

“Santa Maria is a relatively fresh impact crater. It’s geologically very young, hardly eroded at all, and hard to date quantitatively,” said Ray Arvidson from Washington University in St. Louis. Arvidson is the deputy principal investigator for the Spirit and Opportunity rovers.

The rover had to take a pause anyway in its sojourn to Endeavour because of a restrictive period of solar conjunction. Conjunction is the period when the Sun is directly in between the Earth and Mars and results in a temporary period of communications disruptions and blackouts.

During conjunction – which lasted from Jan. 28 to Feb. 12 – the rover remained stationary. No commands were uplinked to Opportunity out of caution that a command transmission could be disrupted and potentially have an adverse effect.

Advantageously, the pause in movement also allows the researchers to do a long-integration assessment of the composition of a selected target which they might not otherwise have conducted.

By mid-January 2011, Opportunity had reached the location – dubbed ‘Yuma’ – at the southeast rim of the crater where water bearing sulfate deposits had been detected. A study of these minerals will help inform researchers about the potential for habitability at this location on the surface of Mars.

Opportunity at rim of Santa Maria crater as imaged from Mars orbit on March 1, 2011, Sol 2524.
Rover was extending robotic arm to Ruiz Garcia rock as it was imaged by NASA’s MRO orbiter.
Credit: NASA/JPL-Caltech/Univ. of Arizona

Opportunity snapped a collection of raw images from ‘Yuma’ which Marco Di Lorenzo and myself assembled into a panoramic photo mosaic (shown above) to illustrate the location. The high resolution version was selected to appear at Astronomy Picture of the Day on Jan. 29, 2011.

The rover turned a few degrees to achieve a better position for deploying Opportunity’s robotic arm, formally known as the instrument deployment device or IDD, to a target within reach of the arms science instruments.

“Opportunity is sitting at the southeast rim of Santa Maria,” Arvidson told me. “We used Opportunity’s Rock Abrasion Tool (RAT) to brush a selected target and the Moessbauer spectrometer was placed on the brushed outcrop. That spot was named ‘Luis De Torres’, said Arvidson.

Ruiz Garcia rock imaged by pancam camera on Sol 2419. Credit: NASA/JPL/Cornell
‘Luis De Torres’ was chosen based on the bright, extensive outcrop in the region in which CRISM sees evidence of a hydrated sulfate signature.”

Opportunity successfully analyzed ‘Luis De Torres’ with all the instruments located at the end of the robotic arm; including the Microscopic Imager (MI), the alpha particle X-ray spectrometer (APXS) and then the Moessbauer spectrometer (MB) for a multi-week integration of data collection.

After emerging in fine health from the conjunction, the rover performed a 3-millimeter deep grind on ‘Luis De Torres’ with the RAT in mid-February 2011 to learn more about the rocks interior composition. Opportunity then snapped a series of microscopic images and collected spectra with the APXS spectrometer.

The rover then continued its counterclockwise path along the eastern edge of the crater, driving northwards some 30 meters along the crater rim to a new exposed rock target – informally named ‘Ruiz Garcia’ to collect more APXS spectra and microscopic images. See our mosaic showing “Ruiz Garcia” at the lip of the crater (above).

Opportunity finished up the exploration of the eastern side of Santa Maria in March by snapping a few more high resolution panoramas before resuming the drive to Endeavour crater which lies some 6.5 kilometers (4 miles) away.

Endeavour is Opportunity’s ultimate target in the trek across the Martian dunes because it possesses exposures of a hitherto unexplored type of even more ancient hydrated minerals, known as phyllosilicates, that form in neutral water more conducive to the formation of life.

Raw image from Opportunity's front hazard-avoidance camera on Sol 2524 ( March 1, 2011)
showing the robotic arm extended to Ruiz Garcia rock target. Credit: NASA/JPL/Cornell

Astronomy Without A Telescope – Dark Statistics

The dark flow hypothesis. A region of the observable universe is being influenced by a mysterious something outside the observable universe. Source: universe-review.ca

[/caption]

The hypothetical dark flow seen in the movement of galaxy clusters requires that we can reliably identify a clear statistical correlation in the motion of distant objects which are, in any case, flowing outwards with the expansion of the universe and may also have their own individual (or peculiar) motion arising from gravitational interactions.

For example, although galaxies have a general tendency to rush away from each other as space-time expands between them, the Milky Way and the Andromeda Galaxy are currently on a gravitationally bound collision course.

So, if you are interested in the motion of the universe at a large scale, it’s best to study bulk flow – where you step back from consideration of individual objects and instead look for general tendencies in the motion of large numbers of objects.

Very large scale observations of the motion of galaxy clusters were proposed by Kashlinsky et al in 2008 to indicate a region of aberrant flow, inconsistent with the general tendency in the motion and velocity expected by the expansion of the universe – and which cannot be accounted for by localized gravitational interactions.

On the basis of such findings, Kashlinsky has proposed that inhomogeneities in the early universe may have existed prior to cosmic inflation – which would represent a violation of the currently favored standard model for the evolution of the universe, known as the Lambda Cold Dark Matter (Lambda CDM) model.

The aberrant bulk flow might result from the existence of a large concentration of mass beyond the edge of the observable universe – or heck, maybe it is another adjacent universe. Since the cause is unknown – and perhaps unknowable, if the cause is beyond our observable horizon – the astronomical interrobang ‘dark’ is invoked – giving us the term ‘dark flow’.

To be fair, a lot of the more ‘out there’ suggestions to account for these data are made by commentators of Kashlinsky, rather than Kashlinsky and fellow researchers themselves – and that includes use of the term dark flow. Nonetheless, if the Kashlinsky data isn’t rock solid, all this wild speculation becomes a little redundant – and Occam’s razor suggests we should continue assuming that the universe is best explained by the current standard Lambda CDM model.

The apparent aberrant 'dark flow' (between the constellations of Centaurus and Vela) is alleged to show up in both close and distant galaxy clusters - where red is most distant, blue is least distant. This would suggest it is something that has been there since the universe was very young. Credit: Kashlinsky, NASA.

The Kashlinsky interpretation does have its critics. For example, Dai et al have provided a recent assessment of bulk flow based on the individual (peculiar) velocities of type 1A supernovae.

The Kashlinsky analysis is based on observations of the Sunyaev–Zel’dovich effect – which involves faint distortions in the cosmic microwave background (CMB) resulting from CMB photons interacting with energetic electrons – and these observations are only considered useful for identifying and observing the behavior of very large scale structures such as galaxy clusters. Dai et al instead use specific data points – being standard candle Type 1a supernovae observations – and look at the statistical fit of these data to the expected bulk flow of the universe.

So, while Kashlinsky et al say we should ignore the motion of individual units and just look at the bulk flow – Dai et al counter with saying we should look at the motion of individual units and determine how well those data fit an assumed bulk flow.

It turns out that Dai et al find the supernovae data can fit the general trend of bulk flow proposed by Kashlinsky – but only in closer (low red shift) regions. More significantly, they are unable to replicate any aberrant velocities. Kashlinsky measured an aberrant bulk flow of more than 600 kilometers a second, while Dai et al found velocities derived from Type 1a supernovae observations to best fit a bulk flow of only 188 kilometers a second. This is a close fit with the bulk flow expected from the Lambda CDM model of the expanding universe, which is around 170 kilometers a second.

Either way, it’s all down to a statistical analysis of general tendencies. More data would help here.

Further reading: Dai et al. Measuring the cosmological bulk flow using the peculiar velocities of supernovae.