JWST Sunscreen Offers SPF 1,000,000

The James Webb Space Telescope will have a sunshield that is about the size of a tennis court, and mission managers say it will offer the best “SPF” (Sun Protection Factor) in the Universe.

“Each of the five layers of the shield is less than half the thickness of a piece of paper,” said John Durning, Deputy Project Manager for JWST. “The five work together to create an effective SPF of 1,000,000.”

This sunshield protects the observatory from unwanted light, keeping it cool and allowing it to detect heat from faraway objects in the universe. So, how do you get something that large into orbit?
Continue reading “JWST Sunscreen Offers SPF 1,000,000”

Is National Academies Review of Astronaut Numbers Needed?

Two of the astronauts who flew the STS-123, Garrett Reisman (center) and Dom Gorie (right) have already left NASA. More appear to be following their lead. Image Credit: NASA.gov

[/caption]

In the wake of the recent departure of astronaut Garrett Reisman from NASA to work for SpaceX, the necessity of the National Academies review, started this past December, to determine the of the number of astronauts that NASA needs should be called into question. Reisman is but one of many space fliers that have left NASA within the past year in what some might describe as a mass exodus from the nation’s astronaut corps.

The veteran astronauts that have left NASA recently include Dom Gorie, Marsha Ivens, Jose Hernandez and Alan Poindexter. NASA has lost an astronaut at the rate of approximately one every two months. Many have left after the crew of the final shuttle mission, STS-135, was announced. While plans for new rockets and spacecraft are on the drawing boards, it may be some time before NASA is launching anyone into space.

Long-time shuttle astronaut Marsha Ivens, along with others have left the space agency within the oast year. Photo Credit: NASA

Astronauts, by their nature, tend to be type “A” personalities, those that thrive on a challenging work environment. It is for this reason that many are probably leaving the space agency, for career tracks that are both more satisfying intellectually as well as being more lucrative.

Currently, NASA has a number of different proposals of what should follow the shuttle program, which is set to end this June when the shuttle Atlantis touches down for its final “wheelstop.” After that, the U.S. will become dependent on Russia for transportation to the International Space Station (ISS). This places NASA in an uncomfortable, if all-too familiar position, as it has had to rely on Russian Soyuz spacecraft after the Columbia disaster in 2003. Russia has recently announced that seats aboard its Soyuz spacecraft will increase; it will now cost the United States $56 million each.

Jose Hernandez left NASA in 2010 to work in the private sector. Photo Credit: NASA

Reisman is a three-time shuttle veteran, he flew up to the ISS twice, on STS-123 and STS-132 and once down on STS-124. He will join SpaceX as a senior engineer toward astronaut safety and assurance. For their part, SpaceX is thrilled to be gaining highly-skilled workers like Reisman.

“We’re excited about the great team that we are building. Our talent is the key to our success. Garrett’s experience designing and using spaceflight hardware will be invaluable as we prepare the spacecraft that will carry the next generation of explorers,” said Elon Musk, SpaceX CEO and Chief Technology Officer.

In the final analysis this is speculattion. At some point, the amount of astronauts that leave the agency could level off leaving the agency with a consistent number. Also, when the agency again finds itself in the business of launching men and women into orbit and beyond it can begin looking for new astronaut candidates. The only problem with this is that if we need more astronauts – we will have to wait for them to complete the required training. While some might say this is guessing, so too is the precepts of the National Academies Review. Until NASA forges through this tumultuous time in its history the review’s findings will be inaccurate at best.

The fact is no one knows what the “future” NASA will look like. The mission objectives of the agency just a little over a year ago were wildly different than what they are today. Until the agency has a long-term mission statement, whatever conclusion the National Academies review comes up with – is academic.

As NASA bids farewell to the shuttle era, it also says goodbye to many of the men and women who have made that era a reality. Photo Credit: NASA

Shuttle Endeavour Photo Special: On Top of Pad 39A for Final Flight

Panoramic view from the upper reaches of the Shuttle Gantry - Fixed Service Structure - at Launch Pad 39A at the Kennedy Space Center. View shows the top of the shuttle stack and Florida Space Coastline. Credit: Ken Kremer

[/caption]

Space Shuttle Endeavour now sits majestically at launch pad 39 A at the Kennedy Space Center, awaiting her historic final spaceflight on the STS-134 mission. Following her nighttime rollout to the pad, I was part of a lucky band of photographers and journalists permitted to travel along and participate in the ultimate photo op on a picture perfect day.

NASA allowed us to get breathtakingly close and document Endeavour from multiple absolutely awesome vantage points all around the launch pad from top to bottom. We were given access to shoot from the upper reaches of the launch gantry with stunning panoramic vistas of the Florida coastline to the bottom of the launch platform and standing directly beneath the External Tank and adjacent to the Twin Solid Rocket Boosters.

Here is part 1 of my photo album which focuses on the upper levels and includes our visit to the White Room – where the astronauts enter the crew hatch to board the shuttle orbiter to take their seats for the adventure of a lifetime.

Walkway to the White Room and astronaut’s crew hatch at Pad 39 A. Credit: Ken Kremer www.kenkremer.com

With the shuttle era rapidly drawing to a close, NASA has opened up media access in ways not previously allowed so that we can share these rarely seen views of the shuttle with the public.

Close up of Endeavour crew cabin, ET, SRB and astronaut walkway to the White Room. Credit: Ken Kremer

STS-134 will be the 25th and final flight for Space Shuttle Endeavour. Liftoff is set slated for April 19 with an all veteran crew of six, led by Shuttle Commander Mark Kelly.

Endeavour will haul the Alpha Magnetic Spectrometer (AMS) to orbit and attach this premiere science experiment to the truss structure of the International Space Station. AMS will search for dark matter and antimatter and seak to determine the origin of the universe.

Read more about the STS-134 mission in my prior reports here and here

View from top levels of Launch Pad 39A to Endeavour and Florida coast. Credit: Ken Kremer
Space Shuttle Endeavour awaits April 19 launch from Pad 39A at KSC. Credit: Ken Kremer
Side view of Space Shuttle Endeavour from on top of Pad 39A at KSC looking out to Florida coastline. at KSC. Credit Ken Kremer
Looking down along the Solid Rocket Boosters to the base of the Mobile Launch Platform at Pad 39A. Credit: Ken Kremer
View from the top of the retracted Rotating Service Structure (RSS) at Pad 39A to Endeavour and gaseous oxygen vent hood – beanie cap - with humerous wind monitor and Pad 39B off in the distance at left. Credit: Ken Kremer
Close up of Endeavour crew cabin attached to the White Room, Credit: Ken Kremer
Inside the White Room at Pad 39 A and the crew hatch to Shuttle Endeavour. Credit: Ken Kremer
Ken on top of the Rotating Service Structure (RSS) at Pad 39A with Endeavour and
gaseous oxygen vent hood – beanie cap. Credit: Ken Kremer
Space Shuttle Endeavour and launch gantry at Launch Pad 39A at KSC.
For context, the photos above were taken from the upper levels of the pad service structures at left (Rotating Service Structure and Fixed Service Structure) and the White Room attached to crew cabin at center. The Flame Trench is at bottom, center. Credit: Ken Kremer

Coming to a Sky Near You: The Realm of Galaxies

The original Hubble Ultra-Deep Field (Credit NASA, ESA, and S. Beckwith (STScI) and the HUDF Team).

[/caption]

We live on a planet which orbits a star, and along with a hundred billion other stars, our Sun orbits the centre of our Milky Way galaxy. It doesn’t just stop there; our galaxy is one of hundreds of billions of galaxies in our Universe that gravitationally clump together in groups or clusters.

Throughout Spring in the northern hemisphere, astronomers and people interested in the night sky are going to be in for a galactic treat, as this is the time of year we can see the Coma/Virgo Super cluster or “Realm of Galaxies”.

Galaxies are massive islands of stars, gas and dust in the Universe; they are where stars and planets are born and eventually die. Galaxies are cosmic factories of creation — where it all happens on a very grand scale. To give you an idea of size, it would take you roughly 100,000 years to travel across the disc of the Milky Way at the speed of light!

Andromeda Galaxy.

The Milky Way is the second largest member of our local group of galaxies with Andromeda being the largest. Other members of our local group include the Triangulum galaxy and large and small Magellanic Clouds.

Virgo Galaxy Cluster - NOAO/AURA/NSF

The Coma/ Virgo Super cluster dominates our intergalactic neighbourhood; it represents the physical centre of our Local Super cluster and influences all the galaxies and galaxy groups by the gravitational attraction of its enormous mass.

Unfortunately galaxies are almost impossible to see with the naked eye, so you will need powerful binoculars or a large telescope, such as a Dobsonian to see most of the brighter galaxies in this region.

The cluster contains approximately 2,000 elliptical and spiral galaxies of which approximately 20 or more are observable using amateur equipment. This includes 16 Messier objects such as the Black eye spiral Galaxy M64, and elliptical galaxies, M86 with its plume, massive M87 at its centre and beautiful spiral M88, to name just a few.

From Left to Right M64, M86 and M88 (Credit NASA)

To find the approximate location of the Realm of Galaxies, first find the constellation of Leo – the lion — easily found in the South East this time of year with the backwards question mark overhis head. Go past Leo’s rear end and you will be in the bowl asterism of Virgo, to the bottom left of Leo and the faint constellation of Coma Berenices (Berenices hair) top left of Leo. This is the Realm of Galaxies!

Star Chart to help you find the Realm of Galaxies (Credit Adrian West)

Download a map of this region or use a star atlas to find your way around this area and try and spot as many galactic delights (faint fuzzies) as you can. As a bonus, the ringed Planet Saturn is just below this area too at the moment!

Give yourself plenty of time, wrap up warm and just think, you are looking for the largest structures in the Universe, hundreds of millions of light years away from Earth.

Your Pictures of the “Super” Full Moon

The full Moon on March 19, 2011, as seen in Ankara, Turkey. Credit: Ra?id Tu?ra

[/caption]

How super was your full Moon on March 19, 2011? I was completely clouded out, but thankfully quite a few people have been kind enough to share their images. Here are a pictures sent in by readers, as well as via Twitter and Facebook. We’ve got images from all around the world, and even though the size of the Moon really wasn’t that much bigger than usual, (read here why not) it is great to see so many people getting out and looking up at the sky! Our lead image comes from Rasid Tugral in Ankara, Turkey.

This view of the March 19, 2011 full Moon was taken on West Kennet Avenue at the Avebury Stone Circle in Wiltshire. Credit: Pete Glastonbury
Perigee moonrise from Rothenfels, Germany. Credit: Daniel Fischer.

This one is from Daniel Fischer , who took a series of images of the Perigee moonrise sequence from Rothenfels, Germany.

Perigee Moon. Credit: Jason Major

Jason Major from Lights in the Dark created this image from a combination of two exposures from his Nikon D80 and 200mm telephoto.

The full super moon. Credit: Peter Riesett
The full moon is seen as it rises near the Lincoln Memorial, Saturday, March 19, 2011, in Washington. The full moon tonight is called a "Super Perigee Moon" since it is at it's closest to Earth in 2011. The last full moon so big and close to Earth occurred in March of 1993. Photo Credit: (NASA/Bill Ingalls)

moon from Tim Burgess on Vimeo.

Supermoon through the trees. Credit: Adam Schaefer
‘I took a few shots of the moon during last week and collected three of them to the same picture adding color lines to help the viewer to compare the size of the moon when it is nearing to its perigree status. All the shots have been taken in Laukaa, Central Finland with Sony Alpha700 dslr -camera equipped with 300mm minolta telephoto lens and 2x tele converter, hand held, manual focus. Unfortunately, the night 19.3.2011 was here cloudy, so I couldn't take photos then.’ Credit: Jukka Seppala, Teacher, nature photographer, Vihtavuori, Central Finland
Full Moon over Florida, sent in by cmurray6.
'I see the Supermoon a rising, I see trouble on the way ....' taken with an iPhone and a 3.5-inch scope: Credit: Bill Dillon
The Moon over the San Francisco, CA Bay Area. Credit: Diane Garber
The Moon and an old coal fired power station in Fremantle, Western Australia. Credit: Donna Oliver Rockingham, Western Australia

This gorgeous shot, was sent in by Donna Oliver from western Australia, take a bit of creative license. She says: “The goal was not to shoot the moon as such but to take advantage of the additional light. Obviously on a long exposure, the moon would not look this good, so I shot the moon, then added it. You can see star movement if you look carefully. I made the moon extra large as my interpretation of the Super Moon.”

'The Moon rising behind a couple of palm trees with cows grazing in the foreground. As you can see in the image, the bottom half of the moon has a different tint due to the earths atmosphere.' Credit: Tom Connor, Parrish, FL
SuperMoon taken from Alpha Ridge, March 19, 2011. Credit: James Willinghan
Moon over New Orleans. Credit: Peter Jansen
Moon over Cape Town, South Africa. Equipment: Canon 400D, Sigma 170-500 lens 'The Moon was definitely at its best. I did not try any new tricks as I wanted to compare the "supermoon" with my previous attempts. Phocussing was definitely much easier. My exposure was just right to show up the ejecta rays of the impact craters, Tycho and Copernicus as well.' Credit: Carol Botha
The Moon over Gulf Islands National Seashore near Navarre Beach, Florida. Credit: Mindi Meeks. Click the image to see more in a series taken by Mindi.
A 'side by side' comparison of 4 different shots taken over the period of 30 hours before 'SuperMoon'. It shows the progression of Moon in it's orbit until the closest point. Credit: Ramiz Qureshi, from Karachi, Pakistan.
This one is pretty creative: Saturdays "Supermoon" compared to the size of an apogee moon (2008). The 'big one' was taken yesterday (March 19, 2011). It is compared to the full moon fotographed at 20.4.2008. The same camera and optics was used (Canon EOS 40 D and Canon 100-400L IS @400mm). In 2008 moon distance was 406,000km, Saturday only 357,000km. Credit: Hans Schremmer Niederkrüchten Germany
The Moon over Teneriffa, Canary Islands. Camera: Atik 314 E, Astrotrac and 70/420 tube. Credit: Vesa K.
'I took this in my garden this evening about 9pm using my Tokina 500mm mirror lens. More detail than I was expecting to be honest,' said photographer Dave Green. Click the image to see his Flickr page.
'Supermoon was scared to shows its face to me.' Credit: Euan McIntosh
Full moon over Bassett, Virginia, 03/19/2011. Credit: Essie Hollandswort
Image of the Full Moon at perigee, taken from Tabuk, Kingdom of Saudi Arabia, on March 19th., 2011 at 20.05UT using a Canon 30D camera set at 1/800sec and 1000ASA. The camera was attached to an 80mm refractor of 500mm focal length and a x3 teleconverter giving an effective focal length of 1,500mm. Credit: Colin Henshaw.
The full Moon over England. Credit: Jerry T Krzyzanowski. Click the image to see his gallery.
This Super Moon image was taken in Pointe-Claire,Canada. The Super Moon is right behind Mercier bridge, one of the key bridge that ties the Montreal island to the south shore. Credit: Jean-Guy Corbeil, Beaconsfield, Québec
Full Moon over Lake Ontario, beside Hamilton, Ontario (Canada). Credit: Nona Clark

Check out these two from Tavi Greiner on her blog, A Sky Full of Stars: In this one, the Moon rises over a boat on the Shallotte River, just a few hundred yards from the Atlantic Ocean.

And in this one, the Moon appears captured by the rigging, and even almost appears to have lit the ropes on fire.

Permanent Magnet

Permanent Magnet
Super Magnets, the strongest type of permanent magnets

[/caption]
A permanent magnet is a magnet that does not lose its magnet field. However what makes a magnet permanent? In order to understand this we need to know how magnets work. Magnetism is an aspect of the phenomenon known as the electromagnetic force a fundamental force of the physical universe. Magnetism like its other aspect electricity manifests itself as a field. What makes a magnet is when certain substances and elements are induced with a strong magnetic field. In the case of permanent magnets this field remains over time without weakening.

A permanent magnet is a magnet because of the orientation of its domains. Domains are the small magnetic field inherent in the crystalline structure of ferromagnetic materials. Ferromagnetic materials are the only substances capable of being made into magnets they are normally iron, nickel, or alloys that are made or rare-earth metals. A magnet is created when certain condition cause separate domains in a ferromagnetic item to be all aligned in the same direction. However the method used in most cases weak magnets can only be made. This is normally by direct contact with a naturally magnetic material or by running an electric current through it. However in the case of a field produced by rubbing it against a strong magnet is too weak and will fade over time as the domains return to their original positions.

The main way that permanent magnets are created is by heating a ferromagnetic material to a key high temperature. The temperature is specific to each kind of metal but it has the effect of aligning and “fixing” the domains of the magnet in a permanent position. It is conjectured that this same process inside the Earth is what creates natural permanent magnets.

Permanent magnets are important for their industrial uses especially when it comes to power generation and electric motors. The induction process for turbines and generators needs permanent magnets to turn mechanical motion into energy. They are also important for electric motors in many electronics using the reverse of the induction of electric current to make mechanical energy. As you can see without the permanent magnet we would not be able to take full advantage of the capabilities of electricity in modern devices.

We have written many articles about permanent magnets for Universe Today. Here’s an article about bar magnets, and here’s an article about super magnets.

If you’d like more info on permanent magnets, check out these articles from Hyperphysics and Practical Physics.

We’ve also recorded an entire episode of Astronomy Cast all about Magnetism. Listen here, Episode 42: Magnetism Everywhere.

References:
Hyperphysics
How Magnets Work

Astronomy Without A Telescope – Doubly Special Relativity

The Large Hadron Collider - destined to deliver fabulous science data, but uncertain if these will include an evidence basis for quantum gravity theories. Credit: CERN.

[/caption]

General relativity, Einstein’s theory of gravity, gives us a useful basis for mathematically modeling the large scale universe – while quantum theory gives us a useful basis for modeling sub-atomic particle physics and the likely small-scale, high-energy-density physics of the early universe – nanoseconds after the Big Bang – which general relativity just models as a singularity and has nothing else to say on the matter.

Quantum gravity theories may have more to say. By extending general relativity into a quantized structure for space-time, maybe we can bridge the gap between small and large scale physics. For example, there’s doubly special relativity.

With conventional special relativity, two different inertial frames of reference may measure the speed of the same object differently. So, if you are on a train and throw a tennis ball forward, you might measure it moving at 10 kilometers an hour. But someone else standing on the train station platform watching your train pass by at 60 kilometers an hour, measures the speed of the ball at 60 + 10 – i.e. 70 kilometers an hour. Give or take a few nanometers per second, you are both correct.

However, as Einstein pointed out, do the same experiment where you shine a torch beam, rather than throw a ball, forward on the train – both you on the train and the person on the platform measure the torch beam’s speed as the speed of light – without that additional 60 kilometers an hour – and you are both correct.

It works out that for the person on the platform, the components of speed (distance and time) are changed on the train so that distances are contracted and time dilated (i.e. slower clocks). And by the math of Lorenz transformations, these effects become more obvious the faster than train goes. It also turns out that the mass of objects on the train increase as well – although, before anyone asks, the train can’t turn into a black hole even at 99.9999(etc) per cent of the speed of light.

Now, doubly special relativity, proposes that not only is the speed of light always the same regardless of your frame of reference, but Planck units of mass and energy are also always the same. This means that relativistic effects (like mass appearing to increase on the train) do not occur at the Planck (i.e. very small) scale – although at larger scales, doubly special relativity should deliver results indistinguishable from conventional special relativity.

The Planck spacecraft - an observatory exploring the universe and named after the founder of quantum theory. Coincidence? Credit: ESA.

Doubly special relativity might also be generalized towards a theory of quantum gravity – which, when extended up from the Planck scale, should deliver results indistinguishable from general relativity.

It turns out that at the Planck scale e = m, even though at macro scales e=mc2. And at the Planck scale, a Planck mass is 2.17645 × 10-8 kg – supposedly the mass of a flea’s egg – and has a Schwarzschild radius of a Planck length – meaning that if you compressed this mass into such a tiny volume, it would become a very small black hole containing one Planck unit of energy.

To put it another way, at the Planck scale, gravity becomes a significant force in quantum physics. Although really, all we are saying that is that there is one Planck unit of gravitational force between two Planck masses when separated by a Planck length – and by the way, a Planck length is the distance that light moves within one unit of Planck time!

And since one Planck unit of energy (1.22×1019 GeV) is considered the maximal energy of particles – it’s tempting to consider that this represents conditions expected in the Planck epoch, being the very first stage of the Big Bang.

It all sounds terribly exciting, but this line of thinking has been criticized as being just a trick to make the math work better, by removing important information about the physical systems under consideration. You also risk undermining fundamental principles of conventional relativity since, as the paper below outlines, a Planck length can be considered an invariable constant independent of an observer’s frame of reference while the speed of light does become variable at very high energy densities.

Nonetheless, since even the Large Hadron Collider is not expected to deliver direct evidence about what may or may not happen at the Planck scale – for now, making the math work better does seem to be the best way forward.

Further reading: Zhang et al. Photon Gas Thermodynamics in Doubly Special Relativity.

Carnival of Space #189

This week’s Carnival of Space is hosted by Steve Tilford over at Steve’s Astro Corner.

Click here to read the Carnival of Space #189.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

Robo Trek Debuts … Robonaut 2 Unleashed and joins First Human-Robot Space Crew

For a moment we had 2 @AstroRobonaut. ISS Commander Scott Kelly and Robonaut 2 pose together in the Destiny laboratory module. Credit: ESA/NASA

Star Trek’s Data must be smiling.

One of his kind has finally made it to the High Frontier. The voyages of Robo Trek have begun !

Robonaut 2, or R2, was finally unleashed from his foam lined packing crate by ISS crewmembers Cady Coleman and Paolo Nespoli on March 15 and attached to a pedestal located inside its new home in the Destiny research module. R2 joins the crew of six human residents as an official member of the ISS crew. See the video above and photos below.

[/caption]

The fancy shipping crate goes by the acronym SLEEPR, which stands for Structural Launch Enclosure to Effectively Protect Robonaut. R2 had been packed inside since last summer.

Robonaut 2 is the first dexterous humanoid robot in space and was delivered to the International Space Station by Space Shuttle Discovery on STS-133.

”Robonaut is now onboard as the newest member of our crew. We are happy to have him onboard. It’s a real good opportunity to help understand the interface of humans and robotics here in space.” said Coleman. “We want to see what Robonaut can do. Congratulations to the team of engineers [at NASA Johnson Space center] who got him ready to fly.”

ISS Flight Engineer Cady Coleman and Robonaut 2

Discovery blasted off for her historic final mission on Feb. 24 and made history to the end by carrying the first joint Human-Robot crew to space.

The all veteran human crew of Discovery was led by Shuttle Commander Steve Lindsey. R2 and SLEEPR were loaded aboard the “Leonardo” storage and logistics module tucked inside the cargo bay of Discovery. Leonardo was berthed at the ISS on March 1 as a new and permanent addition to the pressurized habitable volume of the massive orbiting outpost.

“It feels great to be out of my SLEEPR, even if I can’t stretch out just yet. I can’t wait until I get to start doing some work!” tweeted R2.

The 300-pound R2 was jointly developed in a partnership between NASA and GM at a cost of about $2.5 million. It consists of a head and a torso with two arms and two hands. It was designed with exceptionally dexterous hands and can use the same tools as humans.

ISS Flight Engineer Paolo Nespoli and Robonaut 2

R2 will function as an astronaut’s assistant that can work shoulder to shoulder alongside humans and conduct real work, ranging from science experiments to maintenance chores. After further upgrades to accomplish tasks of growing complexity, R2 may one day venture outside the ISS to help spacewalking astronauts.

“It’s a dream come true to fly the robot to the ISS,” said Ron Diftler in an interview at the Kennedy Space Center. Diftler is the R2 project manager at NASA’s Johnson Space Center.

President Obama called the joint Discovery-ISS crew during the STS-133 mission and said he was eager to see R2 inside the ISS and urged the crew to unpack R2 as soon as possible.

“I understand you guys have a new crew member, this R2 robot,” Obama said. “I don’t know whether you guys are putting R2 to work, but he’s getting a lot of attention. That helps inspire some young people when it comes to science and technology.”

Commander Lindsey replied that R2 was still packed in the shipping crate – SLEEPR – and then joked that, “every once in a while we hear some scratching sounds from inside, maybe, you know, ‘let me out, let me out,’ we’re not sure.”

Robonaut 2 is free at last to meet his destiny in space and Voyage to the Stars.

“I don’t have a window in front of me, but maybe the crew will let me look out of the Cupola sometime,” R2 tweeted from the ISS.

Read my earlier Robonaut/STS-133 stories here, here, here and here.

This isn’t an animation or computer graphics.
I’m in space, says Robonaut 2 from inside the Destiny module at the ISS. Credit: NASA
Robonaut 2 unveiled at the ISS.
Robonaut 2, the dexterous humanoid astronaut helper, is pictured in the Destiny laboratory of the International Space Station.
Flight Engineer Oleg Skripochka and Robonaut 2 inside the ISS
R2A waving goodbye.
Robonaut R2A waving goodbye as Robonaut R2B launches into space aboard STS-133 from the Kernnedy Space Center. R2 is the first humanoid robot in space. Credit: Joe Bibby
R2A waving goodbye to twin brother R2B launching aboad Space Shuttle Discovery on Feb 14, 2011. Credit: Joe Bibby
Discovery launched on Feb. 14 with crew of six human astronauts and R2 Robonaut on STS-133 mission.
First joint Human – Robot crew. Credit: Ken Kremer
The twin brother of the R2 Robonaut and their NASA/GM creators at KSC.
Robonaut 2 and the NASA/GM team of scientists and engineers watched the launch of Space Shuttle Discovery and the first joint Human-Robot crew on the STS-133 mission on Feb. 24, 2011 from the Kennedy Space Center. Credit: Ken Kremer

Hopes Dim for Contacting Spirit Rover

A composite image of how the Spirit rover probably looks, stuck in Gusev Crater. Credit: NASA, image editing by Stu Atkinson.

[/caption]

Still no response from Spirit, the Mars Exploration Rover that became stuck in a sand trap on the Red Planet, and went into hibernation without sufficient solar power. March 10 was the point at which the rover should have received its maximum amount of sunshine – i.e. power — for this Martian year, and with the passage of that date, optimism is dimming for being able to revive Spirit. But, the rover teams have not yet given up all hope and have a few unique strategies up their sleeves to try and wake the sleeping rover.

Over the past few months, engineers at JPL said they used strategies to contact Spirit based on the possibility that increasing energy availability might wake the rover from hibernation. Now, the team has switched to communication strategies designed to address more than one problem on the rover.

“The commands we are sending starting this week should work in a multiple-fault scenario where Spirit’s main transmitter is no longer working and the mission clock has lost track of time or drifted significantly,” said JPL’s John Callas, project manager for Spirit and Opportunity.

No one probably wants to hear this, but if no signal is heard from Spirit in the next month or two, the rover will officially be declared as lost, and the rover teams will shift to single-rover operations, continuing to operate Spirit’s active twin, Opportunity.

The Spirit rover, as seen by the HiRISE camera on the Mars Reconnaissance Orbiter. Credit: NASA, image enhanced by Stu Atkinson.

Spirit has not communicated for almost one Earth year — since March 22, 2010. Being stuck as the Martian winter approached, the rover could not move into a favorable position for its solar panels to gather enough energy from the Sun to keep the rover completely “alive,” and it eventually went into a low-power hibernation mode.

Officials from JPL said that during the Martian winter with most heaters turned off, Spirit experienced colder internal temperatures than in any of its three previous winters on Mars. The cold could have damaged any of several electronic components that, if damaged, would prevent reestablishing communication with Spirit.

But the rover teams have worked for more than 8 months to try and regain contact, just in case the increased solar power available would have awoken Spirit. NASA’s Deep Space Network of antennas in California, Spain and Australia has been listening for Spirit daily. The rover team has also sent commands to elicit a response from the rover even if the rover has lost track of time, or if its receiver has degraded in frequency response.

With the available solar energy at Spirit’s site estimated to peak on March 10, revised commanding then began March 15, including instructions for the rover to be receptive over UHF relay to hailing from the Mars orbiters for extended periods of time and to use a backup transmitter on the rover.

We’ll wait patiently, and hope to hear from Spirit.

She landed on Mars waaaay back on Jan. 4, 2004, for a mission originally designed to last for three months.

Spirit and Opportunity both have made important discoveries about wet environments on ancient Mars that may have been favorable for supporting microbial life. Opportunity landed three weeks after Spirit.