Looking oddly reminiscent of the “V” depicted in the logo for the sci-fi television series “V,” this has to be one of the strangest objects in space. It’s the Westbrook Nebula — also known as PK166-06, CRL 618 and AFGL 618 — and is a protoplanetary nebula. But this highly irregular bundle of disconnected jets and clouds is the result of a burst of a dying star expelling toxic gases such as carbon monoxide and hydrogen cyanide. Well, toxic to us, anyway, but maybe not to The Visitors!
There are only a few hundred protoplanetary nebulae known in the Milky Way. The appear during a star’s rapid stellar evolution between the late asymptotic giant branch phase and the subsequent planetary nebula phase.
But these short-lived clouds of gas are faint and very hard to see. They emit strong in infrared radiation, and are cool in temperature, so they emit small amounts of visible light. So, astronomers have a few tricks up their telescopic sleeves to try and get images of protoplanetary nebula, and the results are well worth it, as this image demonstrates.
This is a composite image where the astronomers have used exposures in visible light which shows light reflected from the cloud of gas, combined with other exposures in the near-infrared part of the spectrum, showing the dim glow, invisible to human eyes, that is coming from different elements deep in the cloud itself, so this is a kind of reflection nebula.
William Shatner, who played Captain James T. Kirk on the original Star Trek television series, provided a very special message to the crew of space shuttle Discovery during the STS-133 Flight Day 12 wakeup call.
With strains of Alexander Courage’s famous theme song from Star Trek playing, Shatner replaced the original television introduction with, “Space, the final frontier. These have been the voyages of the Space Shuttle Discovery. Her 30 year mission: To seek out new science. To build new outposts. To bring nations together on the final frontier. To boldly go, and do, what no spacecraft has done before.”
And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send and email to the above address.
A recent paper published by a NASA scientist claims the discovery evidence of fossil bacteria in a rare subclass of carbonaceous meteorite. The claims are extraordinary, and were the paper published somewhere other than the Journal of Cosmology, (and given an “exclusive preview” on Fox News) more people might be taking this seriously. But, even so, the topic went viral over the weekend.
Titled “Fossils of Cyanobacteria in CI1 Carbonaceous Meteorites” and written by NASA scientist Dr. Richard Hoover of the Marshall Space Flight Center, the paper makes the bold claim that meteorites found in France and Tanzania in the 1800s (the Alais, Ivuna, and Orgueil CI1 meteorites) have clear evidence pointing to space-dwelling microbes, with inferences of panspermia — the theory that microbes brought to Earth in comets and meteorites could have started life on our planet. “The implications,” says an online synopsis of the paper, “are that life is everywhere, and that life on Earth may have come from other planets.”
The paper states: “Filaments found in the CI1 meteorites have also been detected that exhibit structures consistent with the specialized cells and structures used by cyanobacteria for reproduction (baeocytes, akinetes and hormogonia), nitrogen fixation (basal, intercalary or apical heterocysts) and attachment or motility (fimbriae).”
Dr. Chris McKay, a planetary scientist and astrobiologist at NASA Ames Research Center, pointed out to Universe Today that Hoover’s claims are “extraordinary, because of the ecological setting implied. Cyanobacteria live in liquid water and are photosynthetic.”
McKay said finding heterocysts (cells formed by some filamentous cyanobacteria) would certainly be indicative of life from an actively thriving environment. “The implication of these results is that the meteorite hosted a liquid water environment in contact with sunlight and high oxygen,” he told Universe Today in an email.
There have been previous reports of bacteria in meteorites, but most have turned out to be contamination or misunderstanding of the microscopic structures within rocks (remember the Alan Hills Meteorite claim from 1996 –which is still widely controversial.) It turns out that Dr. Hoover has reported fossil bacteria previously, but none have actually been proven. And, it also turns out that Hoover’s paper was submitted to the Astrobiology Journal in 2007, but the review was never completed.
“Richard Hoover is a careful and accomplished microscopist so there is every reason to believe that the structures he sees are present and are not due to contamination,” McKay said. “If these structures had been reported from sediments from a lake bottom there would be no question that they were classified correctly as biological remains.”
There are two possibilities, McKay said. “One, the structures are not biological but are chance shapes. In a millimeter square area of meteorite there are million possible 1 micron squares. Perhaps any diversity of shapes can be found if searching is extensive.”
Or the second possibility, McKay said is that “the environments on meteorites are, or were, radically different from what we would expect. There are suggestions for how meteorite parent bodies could have sustained interior liquid water. But not in a way that could have the liquid water exposed to sunlight. It also seems unlikely that high oxygen concentrations would be implied.”
There’s also the question of why Hoover would choose to publish in the somewhat dubious Journal of Cosmology, an open access, but supposedly peer-reviewed online journal, which has come under fire for errors found in some of their articles, and for the rather sensational claims made by some of the papers published within.
But word also was released by the Journal of Cosmology that they will cease publication in May 2011. In a press release titled, “Journal of Cosmology To Stop Publishing–Killed by Thieves and Crooks,” (posted by journalist David Dobbs), the press release said that the “JOC threatened the status quo at NASA,” and that “JOC’s success posed a direct threat to traditional subscription based science periodicals, such as “science” magazine; just as online news killed many newspapers. Not surprisingly, JOC was targeted by science magazine and others who engaged in illegal, criminal, anti-competitive acts to prevent JOC from distributing news about its online editions and books.”
UPDATE: NASA has released a statement on Hoover’s paper, saying that “NASA cannot stand behind or support a scientific claim unless it has been peer-reviewed or thoroughly examined by other qualified experts. This paper was submitted in 2007 to the International Journal of Astrobiology. However, the peer review process was not completed for that submission. NASA also was unaware of the recent submission of the paper to the Journal of Cosmology or of the paper’s subsequent publication. Additional questions should be directed to the author of the paper.” – Dr. Paul Hertz, chief scientist of NASA’s Science Mission Directorate in Washington
But Hoover’s work is generating a huge buzz.
The journal’s editor in chief, Rudy Schild of the Harvard-Smithsonian Centre for Astrophysics, said Hoover is a “highly respected scientist and astrobiologist with a prestigious record of accomplishment at NASA. Given the controversial nature of his discovery, we have invited 100 experts and have issued a general invitation to over 5,000 scientists from the scientific community to review the paper and to offer their critical analysis.”
“No other paper in the history of science has undergone such a thorough analysis, and no other scientific journal in the history of science has made such a profoundly important paper available to the scientific community, for comment, before it is published,” Schild added. Those commentaries will be published March 7 through March 10, and can be found here.
Certainly, further review of Hoover’s work needs to be conducted.
[/caption]When I first heard about buckyballs a couple of decades ago, I had nothing but the deepest respect for anyone who understood abstract ideas like string theory and branes. After all, how often were you likely to discuss Buckminster fullerenes with a contemporary while standing in the laundry detergent aisle of your local grocery store? The very concept of “magnetic” carbon was new and exciting! It was known to exist in small quantities in nature – produced by lightning and fire – but the real kicker was born solely in a laboratory. Buckyballs have been found on Earth and in meteorites, and now in space, and can act as “cages” to capture other atoms and molecules. Some theories suggest that the buckyballs may have carried to the Earth substances that make life possible.
According to the McDonald Observatory press release: Observations made with NASA’s Spitzer Space Telescope have provided surprises concerning the presence of buckminsterfullerenes, or “buckyballs,” the largest known molecules in space. A study of R Coronae Borealis stars by David L. Lambert, Director of The University of Texas at Austin’s McDonald Observatory, and colleagues shows that buckyballs are more common in space than previously thought. The research will appear in the March 10 issue of The Astrophysical Journal. The team found that “buckyballs do not occur in very rare hydrogen-poor environments as previously thought, but in commonly found hydrogen-rich environments and, therefore, are more common in space than previously believed,” Lambert says.
Buckyballs are made of 60 carbon atoms arranged in shape similar to a soccer ball, with patterns of alternating hexagons and pentagons. Their structure is reminiscent of Buckminster Fuller’s geodesic domes, for which they are named. These molecules are very stable and difficult to destroy. Richard Curl, Harold Kroto, and Richard Smalley won the 1996 Nobel Prize in chemistry for synthesizing buckyballs in a laboratory. The consensus based on lab experiments has been that buckyballs do not form in space environments that have hydrogen, because the hydrogen would inhibit their formation. Instead, the idea has been that stars with very little hydrogen but rich in carbon — such as the so-called “R Coronae Borealis stars” — provide an ideal environment for their formation in space.
Lambert, along with N. Kameswara Rao of Indian Institute of Astrophysics and Domingo Anibal García-Hernández of the Instituto de Astrofisica de Canarias, put these theories to the test. They used Spitzer Space Telescope to take infrared spectra of R Coronae Borealis stars to look for buckyballs in their chemical make-up. They found these molecules do not occur in those R Coronae Borealis stars with little or no hydrogen, an observation contrary to expectation. The group also found that buckyballs do exist in the two R Coronae Borealis stars in their sample that contain a fair amount of hydrogen. Studies published last year, including one by García-Hernández, showed that buckyballs were present in planetary nebulae rich in hydrogen. Together, these results tell us that fullerenes are much more abundant than previously believed, because they are formed in normal and common “hydrogen-rich” and not rare “hydrogen-poor” environments.
The current observations have changed our understanding of how buckyballs form. It suggests they are created when ultraviolet radiation strikes dust grains (specifically, “hydrogenated amorphous carbon grains”) or by collisions of gas. The dust grains are vaporized, producing an interesting chemistry where buckyballs and polycyclic aromatic hydrocarbons are formed. (The latter molecules of a variety of sizes are formed from carbon and hydrogen.) “In recent decades, a number of molecules and diverse dust features have been identified by astronomical observations in various environments. Most of the dust that determines the physical and chemical characteristics of the interstellar medium is formed in the outflows of asymptotic giant branch stars and is further processed when these objects become planetary nebulae.” says Jan Cami (et al). “We studied the environment of Tc 1, a peculiar planetary nebula whose infrared spectrum shows emission from cold and neutral C60 and C70. The two molecules amount to a few percent of the available cosmic carbon in this region. This finding indicates that if the conditions are right, fullerenes can and do form efficiently in space.”
Just to be clear, this answer to ‘which planet has the longest day’ is based on this criteria: a planets day is how long it takes it to complete one rotation on its axis. This is also referred to as its rotational period. So, Venus has the longest day of any planet in our solar system. It completes one rotation every 243 Earth days. Its day lasts longer than its orbit. It orbits the Sun every 224.65 Earth days, so a day is nearly 20 Earth days longer than its year.
Length Of A Day On The Planets In Our Solar System
Mercury: 58 days and 15 hours Venus: 243 days Mars: 24 hours, 39 minutes and 35 seconds Jupiter: 9.9 hours Saturn: 10 hours 45 minutes 45 seconds, but can only be approximated because of atmospheric density. Uranus: 17 hours, 14 minutes and 24 seconds Neptune: 16 hours, 6 minutes and 36 seconds, but it is a bit more complicated than that. The equator and poles rotate at different speeds. You would have to do more research on the planet to fully understand the varying day on Neptune.
Now, back to why the Venusian day is longer than its year. Venus is closer to the Sun; therefore, its orbit takes a shorter period of time than its rotation upon its axis. The planet also rotates in retrograde. That means it spins in the opposite direction of the Earth. If you were standing on Venus, you could see the Sun rise in the West and set in the East.
A manned Venus flyby mission was proposed in the late 1960s. The mission was planned to launch in late October or early November 1973, and would have used a Saturn V rocket to send three men. The flight would have lasted approximately one year. The spacecraft would have passed approximately 5,000 km from the surface about four months into the flight. There have been several unmanned probes and flybys of the planet, including MESSENGER and the Venus Express. Future proposed missions include the BepiColombo, Venus InSitu Explorer, and the Venera-D.
[/caption]I think that one of the most interesting questions that have been posed of late is ‘what is Mar’s atmosphere made of?’ There has been a great deal of study done on this topic and interest is increasing since the discovery of methane, a possible indicator of life.
The atmosphere of Mars is over 95% carbon dioxide, 95.32% to be exact. The breakdown of gases goes like this:
Carbon dioxide 95.32%
Nitrogen 2.7%
Argon 1.6%
Oxygen 0.13%
Carbon monoxide 0.07%
Water vapor 0.03%
Nitric oxide .0013%
Trace gases(including krypton, methane, etc)
The Martian atmosphere has four main layers: lower, middle, upper, and exosphere. The lower atmosphere is a warm region(around 210 K). It is warmed by airborne dust(1.5 micrometers across) and heat radiated from the surface. This airborne dust gives the planet its ruddy brown appearance. The middle atmosphere is features a jetstream similar to Earth’s. The upper atmosphere is heated by the solar wind and the temperatures are much higher than at the surface. This heat separates the gases. The exosphere starts at about 200 km and has no clear end. It just tapers off into space.
The carbon dioxide in the atmosphere freezes for part of the year and may drop to the surface. As much as 25% of the atmospheric carbon dioxide condenses at the polar caps into solid ice(dry ice) because the Martian poles are not exposed to sunlight during the planet’s winter. When the poles are again exposed to sunlight, the ice returns to its gas form and rises back into the atmosphere. So, a significant annual variation in the atmospheric pressure and atmospheric composition around the Martian poles.
The methane mentioned earlier is used to show the possibility of life on Mars. While it is a byproduct of life, it is also a result of volcanism, geothermal process, and hydrothermal activity. Methane is an unstable gas, so there has to be a source on the planet that is constantly replenishing it. It has to be a very active source, because studies have shown that the methane is destroyed in less than on Earth year. It is thought that peroxides and perchlorates in the soil or that it condenses and evaporates seasonally from clathrates.
Now you answer ‘ what is Mar’s atmosphere made of?’ the next time it comes up. You can be sure that the methane component will continue to be studied by rovers, orbiters, and, in the future, astronauts.
We have written many articles about the atmosphere of Mars for Universe Today. Here’s an article about the air on Mars, and here’s an article about Mars’ comparison with Earth.
No. You’re not looking at a Hubble image. This incredibly detailed photo was taken with a 14.5″ telescope from right here on the surface of planet Earth. When Allan Sandage turned the Hale telescope its way, he discovered the first Cepheid variables beyond our local galaxy group. At the time he concluded its distance as about 8,000 light years away, but today it is believed to be as distant as 8,000,000. What’s its name? NGC 2403…
Discovered in 1788 by Sir William Herschel, this intermediate spiral galaxy is part of the M81/M82 group… and like its contemporaries, is a product of a galaxy merger. Its northern spiral arm connects to NGC 2404 – riddling the halo with young stars. In this masterful astrophoto done by Warren Keller, the pink and red regions denote active star formation, while clusters of neophyte suns gather in the blue OB associations. Like a fine piece of Irish lace, dark regions appear like holes where dust blocks the light. But NGC 2403 doesn’t follow the rules. Here the galaxy’s arms rotate at a different speed.
“High sensitivity H I observations of the nearby spiral galaxy NGC 2403 obtained with the VLA are presented and discussed. The properties of the extended, differentially rotating H I layer with its H I holes, spiral structure and outer warp are described. In addition, these new data reveal the presence of a faint, extended and kinematically anomalous component. This shows up in the H I line profiles as extended wings of emission towards the systemic velocity. In the central regions these wings are very broad (up to 150 km/s) and indicate large deviations from circular motion.” says F. Fraternali (et al). “We have separated the anomalous gas component from the cold disk and have obtained for it a separate velocity field and a separate rotation curve. The mass of the anomalous component is 1/10 of the total H I mass. The rotation velocity of the anomalous gas is 25-50 km/s lower than that of the disk. Its velocity field has non-orthogonal major and minor axes that we interpret as due to an overall inflow motion of 10-20 km/s towards the centre of the galaxy. The picture emerging from these observations is that of a cold H I disk surrounded by a thick and clumpy H I layer characterized by slower rotation and inflow motion towards the center. The origin of this anomalous gas layer is unclear. It is likely, however, that it is related to the high rate of star formation in the disk of NGC 2403 and that its kinematics is the result of a galactic fountain type of mechanism. We suggest that these anomalous H I complexes may be analogous to a part of the High Velocity Clouds of our Galaxy.”
Does this different rotational curve have an cosmological implications? According to the work of E. Battaner and E. Florido: “We review the topic of rotation curves of spiral galaxies emphasizing the standard interpretation as evidence for the existence of dark matter halos. Galaxies other than spirals and late-type dwarfs may also possess great amounts of dark matter, and therefore ellipticals, dwarf spirals, lenticulars and polar ring galaxies are also considered. Furthermore, other methods for determining galactic dark matter, such as those provided by binaries, satellites or globular clusters, have to be included. Cold dark matter hierarchical models constitute the standard way to explain rotation curves, and thus the problem becomes just one aspect of a more general theory explaining structure and galaxy formation. Alternative theories also are included. In the magnetic model, rotation curves could also be a particular aspect of the whole history of cosmic magnetism during different epochs of the Universe.”
Yet on the other hand, perhaps the differing rotations were caused by the merger itself – with no dark matter involved. “Quite a point has been made about deviations of some galaxies from flat rotation curves, specifically the decreased velocity in outer parts of the curves. Such cases can be explained under the diffusion model by considering collisions and tidal interactions between galaxies. In this explanation, the excess gravitational force is considered to be caused by a “cloud” of the agent that carries gravitational force that always is diffusing freely, although more concentrated in some regions than others as a result of the time required for the diffusion process and the size of the regions involved.” says Roy J. Britten. “When tidal interactions have occurred between galaxies, some momentum could be transferred between stars, gas, and dust that would not be shared by the diffusing clouds, and therefore, asymmetries in the gravitational forces would result. For example, the cloud and galaxies could separate if the two galaxies merged because the galaxies would share their momentum and the clouds would remain independent and continue to diffuse. Then, new gravitational clouds would be built slowly by diffusion from the merged galaxy.”
Dark matter or no dark matter, NGC 2403 (07h 36m 51.4s, +65° 36′ 09″) is a pleasure to observe. Located in the northern constellation of Camelopardalis, this 8.4 magnitude spiral galaxy can be spotted under dark sky conditions with ordinary 10X50 binoculars. In 1954 Fritz Zwicky reported a supernova event and 50 years later it happened again, keeping astronomers wondering about this galaxy with the low-luminosity “dwarf” Seyfert nucleus. SN2004 is the bright yellow “star” in this portrait and it is the closest – and brightest – stellar explosion discovered in more than a decade…
As close as your eyepiece on the next dark night!
Many thanks to Warren Keller of Billions and Billions and David Plesko for sharing their incredible work!
[/caption]
CAPE CANAVERAL – Much has been made about the secretive nature of the Orbital Test Vehicle (OTV). Better known as the X-37B, the second of the U.S. Air Force’s OTVs roared off Cape Canaveral Air Force Station’s Launch Complex 41 at 5: 46 p.m. EDT. The Atlas V 501 thundered off of the launch pad carrying the second of the two OTVs into orbit.
The launch was to take place on Mar. 4, but looming cumulus clouds, high winds and rain pushed the launch back a day. The first launch window today opened at 4:09 p.m. EDT, however technical issues required minor work out on the launch pad and it was decided to try for launch during the second launch window’s opening.
The first OTV, USA-212 lifted off from the exact same launch pad on 22 April 2010 and returned to Earth on Dec. 3, 2010. The return to earth tested out the space planes heat shield as well as the vehicle’s hypersonic aerodynamic aspects. The space plane is small enough to be carried within the U.S. space shuttle’s payload bay, it landed at Vandenberg Air Force Base in California. The craft suffered a tire blowout upon landing, but landed safely.
“The X-37B is a scientific achievement as well as a tremendous step in space operations. By itself, the ability to put a vehicle in space, conduct experiments and tests for close to nine months and then have that vehicle autonomously de-orbit and land is an important accomplishment,” said Major Tracy Bunko an Air Force spokeswoman. “This gives the Air Force the ability to examine how state-of-the-art, highly complex technologies will perform in space before they are made operational is an important cost-saving, risk-reducing capability.”
U.S. Air Force officials stated that the X-37B program has the potential of making space experiments much more affordable. This would allow future experiment designers to focus their resources and funds on technology and innovation rather than on what they currently are forced to expend them on – basic services, redundancy and ground operations.
Gravitational waves are apparently devilishly difficult things to model with Einstein field equations, since they are highly dynamic and non-symmetric. Traditionally, the only way to get close to predicting the likely effects of gravity waves was to estimate the required Einstein equation parameters by assuming the objects causing the gravity waves did not generate strong gravity fields themselves – and nor did they move at velocities anywhere close to the speed of light.
Trouble is, the mostly likely candidate objects that might generate detectable gravity waves – close binary neutron stars and merging black holes – have exactly those properties. They are highly compact, very massive bodies that often move at relativistic (i.e. close to the speed of light) velocities.
So, firstly no-one has yet detected gravity waves. But even in 1916, Einstein considered their existence likely and demonstrated mathematically that gravitational radiation should arise when you replace a spherical mass with a rotating dumbbell of the same mass which, due to its geometry, will generate dynamic ebb and flow effects on space-time as it rotates.
To test Einstein’s theory, it’s necessary to design very sensitive detecting equipment – and to date all such attempts have failed. Further hopes now largely rest on the Laser Interferometer Space Antenna (LISA), which is not expected to launch before 2025.
However, as well as sensitive detection equipment like LISA, you also need to calculate what sort of phenomena and what sort of data would represent definitive evidence of a gravity wave – which is where all the theory and math required to determine these expected values is vital.
Initially, theoreticians worked out a post-Newtonian (i.e. Einstein era) approximation (i.e. guesstimate) for a rotating binary system – although it was acknowledged that this approximation would only work effectively for a low mass, low velocity system – where any complicating relativistic and tidal effects, arising from the self-gravity and velocities of the binary objects themselves, could be ignored.
Then came the era of numerical relativity where the advent of supercomputers made it possible to actually model all the dynamics of close massive binaries moving at relativistic speeds, much as how supercomputers can model very dynamic weather systems on Earth.
Surprisingly, or if you like unreasonably, the calculated values from numerical relativity were almost identical to those calculated by the supposedly bodgy post-Newtonian approximation. The post-Newtonian approximation approach just isn’t supposed to work for these situations.
All the authors are left with is the possibility that gravitational redshift makes processes near very massive objects appear slower and gravitationally ‘weaker’ to an external observer than they really are. That could – kind of, sort of – explain the unreasonable effectiveness… but only kind of, sort of.