Podcast: Archaeoastronomy

Dr. Pamela Gay, a pyramid and a camel. Photo courtesy of Dr. Gay

[/caption]

The Sun, Moon, stars and planets are visible to the unaided eye, and so they have been visible to astronomers since before recorded history. Some of the earliest records we do have tell us what the ancient astronomers thought about the heavens, and how they used the changing night sky in their daily lives.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

Archaeoastronomy shownotes and transcript.

Ground-Based Observations Capture Spacewalking Astronaut in Action

Astronaut Stephen Bowen (inside yellow box) was captured in this image during the March 2, 2011 spacewalk for STS-133. Credit: Ralf Vandebergh

[/caption]

More impressive ground based images of the STS-133 mission, this time, Amateur astronomer Ralf Vandebergh of the Netherlands took images during one of the spacewalks for the mission, and likely captured astronaut Steve Bowen at work on the end of the Canadarm 2! Click on the image above, or go to Ralf’s website for a better view and more information.

Another amateur astronomer from the UK, Martin Lewis also took similar images of the spacewalk.

Ralf uses a 10 inch Newtonian telescope with a videocam eyepiece, and manually tracks the ISS and other objects across the sky. He takes most of his images in color to obtain the maximum possible information of the objects.

He took a similar image about 2 years ago of astronaut Joe Acaba on an EVA outside the ISS in March of 2009, which was featured on Astronomy Picture of the Day. He has also taken images of of ISS and Dexter, the special purpose manipulator, or this one of space shuttle Discovery on the STS-131 mission.

X-37B launch delayed due to weather

Poor weather dealyed the launch of the Air Force's Orbital Test Vehicle. Photo Credit: Jason Rhian

[/caption]

CAPE CANAVERAL – Weather delayed the launch of the second of the United States Air Force’s Orbital Test Vehicles (OTV). The X-37B, as it is more commonly known, sate encapsulated within its fairing on top of the Atlas V 501 launch vehicle at Cape Canaveral Air Force Station (CCAFS).

It appeared that the launch might occur at the first launch window, which opened at 3:50 p.m. EDT. However high-level ground winds forced a delay. The second launch window was for 5:27 p.m. EDT, but by this time the winds had increased, Cumulous Clouds had moved into the area – bringing heavy rains in with them, forcing a scrub for the day. The plans are now for a 24-hour recycle of the launch, however tomorrow does not look much better with similar weather threatening the launch.

The first OTV, USA-212 lifted off from the exact same launch pad on 22 April 2010 and returned to Earth on Dec. 3, 2010. The return to earth tested out the space planes heat shield as well as the vehicle’s hypersonic aerodynamic aspects. The space plane is small enough to be carried within the U.S. space shuttle’s payload bay, it landed at Vandenberg Air Force Base in California.

Looming clouds, high winds and eventually rain stopped the launch of the second of the Air Force's OTVs. Photo Credit: Jason Rhian

Spitzer Captures a Pink Sunflower in Space

Classifying Galaxies
This image from NASA's Spitzer Space Telescope shows infrared light from the Sunflower galaxy, otherwise known as Messier 63. Spitzer's view highlights the galaxy's dusty spiral arms. Image credit: NASA/JPL-Caltech

[/caption]

Looking out my own window this morning provides a gloomy overcast view, so this new image from the Spitzer Space Telescope provides a day-brightener: a pink sunflower! This is the Sunflower galaxy, also known as Messier 63, and with Spitzers’ infrared eyes, the arms of the galaxy show up vividly. Infrared light is sensitive to the dust lanes in spiral galaxies, which appear dark in visible-light images. Spitzer’s view reveals complex structures that trace the galaxy’s spiral arm pattern.

Source: JPL
This galaxy is about 37 million-light years away from Earth, and lies close to the well-known Whirlpool galaxy and the associated Messier 51 group of galaxies.

NASA Mission to Europa May Fall to Budget Cuts

Europa During Voyager 2 Closest Approach
Europa During Voyager 2 Closest Approach. Credit: NASA/JPL

[/caption]

Next week, the US National Academy of Sciences will release their decadal review of priorities for planetary science in 2013-2022, and it will be interesting to see how highly prioritized a mission to Jupiter’s enticing moon Europa will be. But according to Space News, word from the NASA Advisory Council’s planetary science subcommittee is that because of probable flat or declining budgets for building and operating planetary probes over the next five years, there will likely be no funding to begin development of a flagship-class mission such as a long-anticipated detailed survey of Europa.

“The out-years budget means no major new starts of a flagship planetary [mission],” Ronald Greeley, a regent’s professor at Arizona State University in Tempe and chairman of the NASA Advisory Council’s planetary science subcommittee, said during a March 1 conference call with panel members. “That’s a major, major issue for our community.”

The only flagship-class planetary mission in the works is the $2.5 billion Mars Science Laboratory Curiosity. The Juno mission to Jupiter, scheduled to launch in August 2011, is a medium-class “New Frontiers” mission set to study Jupiter only and not any of its moons.

The 2012 budget request for NASA, unveiled February 14, 2011 by President Obama, would boost spending on planetary science activities from the current level of $1.36 billion to $1.54 billion next year. But funding would steadily decline over the following four years, to $1.25 billion in 2016.

Space News reports that “NASA’s projected top-line budget is flat over the next five years at $18.72 billion, which when inflation is factored in translates into a decline in spending power. But there are budgetary scenarios under which NASA’s budget would decline over the next five years, even as the agency tries to replace the space shuttle and contends with runaway cost growth on the $5 billion-plus James Webb Space Telescope, the designated successor to the Hubble Space Telescope.”

Many have long hoped for mission to Europa, but budgetary issues have been a problem, even the past; the JIMO (Jupiter Icy Moon Orbiter) mission was canceled in 2005 because of lack of funding.

ESA and NASA have been studying a collaborative mission called Europa Jupiter System Mission/Laplace that would send two spacecraft to survey Jupiter and its moons. It is one of three candidates for a large-scale science mission opportunity that would launch around 2022. ESA has budgeted about $1 billion for the opportunity but is awaiting decisions from NASA and the Japanese space agency, which is collaborating on another candidate mission, before making a final decision on which one to pursue.

“How we will implement [the decadal priorities] within our existing budget needs to be considered,” NASA Planetary Science Division Director Jim Green said during the March 1 conference call, adding there is “no additional money beyond the president’s submitted budget.”

Source: Space News

‘Climate Change Satellite’ Fails to Reach Orbit, Crashes in Ocean

Credit: NASA

[/caption]

NASA’s Glory mission launched from Vandenberg Air Force Base in California Friday at 5:09:45 a.m. EST failed to reach orbit. Telemetry indicated the fairing, the protective shell atop the Taurus XL rocket, did not separate as expected about three minutes after launch. The failure represents a $420 million loss for NASA, and the loss of two important investigations related to climate change: ongoing data collection to monitor the sun’s energy reaching Earth, and a study of how aerosols move through Earth’s atmosphere and may influence climate.

This is the second time a Taurus XL rocket has failed to separate. NASA’s $273 million Orbiting Carbon Observatory crashed into the ocean in February 2009 due to a similar mishap. After that failure, Orbital Sciences redesigned the system. It has worked three times since on the company’s Minotaur rocket.

Source: NASA press release. Also see a previous story about the mission.

US Military X-37B rolls out to Atlas Launch Pad poised for March 4 launch – Photo Album

The secret X-37B mini space shuttle from the Air Force is encapsulated in a bisected 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida. This up close view of the nose cone holding the X 37-B includes the umbilical line attachments. Credit: Ken Kremer

[/caption]
The second X-37B Orbital Test Vehicle (OTV-2) built for the US Air Force was rolled out today (March 3) to the Atlas rocket launch pad at Space Launch Complex-41(SLC-41) at Cape Canaveral Air Force Station, Florida.

The experimental OTV-2 is poised to blast off on Friday, March 4 on an Atlas V rocket in a launch window that extends from 3:39 pm to 5:39 p.m. EST. The X-37B is encapsulated in a 5 meter fairing.

The secret cargo and experiments loaded aboard are shrouded behind a veil of military security.

UPDATE: Due to weather concerns, the launch has been postponed until Saturday, March 5. Weather is predicted to improve to 40% favorable for launch.

Air Force technicians are completing final preparations for the late afternoon blast off of the bronze colored rocket topped by the extra long payload fairing to accommodate the OTV-2.

The rocket is sitting atop the mobile launch platform and was pushed about 1800 feet from the 31 story Vertical Integration Facility (VIF) to launch pad 41 by twin diesel powered trackmobiles. See my photo album of today’s X-37B rollout and close up visit to the Atlas rocket at SLC-41.

“No major changes were required from the OTV-1 flight based on post-flight assessments, but we did make a few minor modifications based on lessons learned from the first flight,” Tracy Bunko, Maj, USAF of the Air Force Press Desk told me in an interview.

“We’re pleased with what we’ve seen so far. Technology assessments are ongoing in areas including re-entry guidance, navigation, and control, thermal protection systems, and flight actuation systems.”

“We want to potentially test the landing capabilities in stronger wind conditions,” Bunko explained.

Read the mission preview and launch report by Jason Rhian

X-37B at Space Launch Complex 41 slated for March 4, 2011 launch after rollout of Atlas V rocket
from Vertical Integration Facility (left) pad 41 (right) at Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer
Atlas V rocket with X-37B bolted atop at pad 41 at Cape Canaveral Air Force Station, Florida poised for March 4 launch. Credit: Ken Kremer
The X-37B is poised for launch on March 4, 2011 after rollout to pad 41 at Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer
X-37B is encapsulated in a Swiss made five meter fairing.
Credit: Ken Kremer
The X-37B Orbital Test Vehicle (OTV) and Atlas V rocket bathed in xenon lights after March 3 rollout at Space Launch Complex-41 (SLC-41) at Cape Canaveral Air Force Station, Florida.
Launch scheduled for March 4. Credit: Ken Kremer
Photo taken from roof of CBS News building at KSC press site

Sequence of Photos showing rollout of Atlas V rocket, from right to left

March 3 rollout of X-37B Vertical Integration Facility (right) to Launch Pad 41 (left) at Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer

March 3 rollout of X-37B Vertical Integration Facility (right) to Launch Pad 41 (left) at Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer
March 3 rollout of X-37B Vertical Integration Facility (right) to Launch Pad 41 (left) at Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer

PAMELA Uncovers Cosmic Ray Surprise

PAMELA data show clear deviations from a single power law model between protons and helium nuclei. Credit: Adriani, et. al, Science.

[/caption]

High energy particles called cosmic rays are constantly bombarding Earth from all directions, and have been thought to come from the blast waves of supernova remnants. But new observations from the PAMELA cosmic ray detector show an unexpected difference in the speeds of protons and helium nuclei, the most abundant components of cosmic rays. The difference is extremely small, but if they were accelerated from the same event, the speeds should be the same.

The PAMELA instrument. Image courtesy of Piergiorgio Picozza

PAMELA, the Payload for Anti-Matter Exploration and light-Nuclei Astrophysics, is on board the Earth-orbiting Russian Resurs-DK1 satellite. It uses a permanent magnet spectrometer along with a variety of specialized detectors to measure the abundance and energy spectra of cosmic rays electrons, positrons, antiprotons and light nuclei over a very large range of energy from 50 MeV to hundreds of GeV.

Just as astronomers use light to view the Universe, scientists use galactic cosmic rays to learn more about the composition and structure of our galaxy, as well as to find out how things like how nuclei can accelerate to nearly the speed of light.

Oscar Adriani and his colleagues using the PAMELA instrument say their new findings are a challenge to our current understanding of how cosmic rays are accelerated and propagated. “We find that the spectral shapes of these two species are different and cannot be well described by a single power law,” the team writes in their paper. “These data challenge the current paradigm of cosmic-ray acceleration in supernova remnants followed by diffusive propagation in the Galaxy.”

Instead, the team concludes, the acceleration and propagation of cosmic rays may be controlled by now unknown and more complex processes.

Supernova remnants are expanding clouds of gas and magnetic fields and can last for thousands of years. Within this cloud, particles are accelerated by bouncing back and forth in the magnetic field of the remnant, and some of the particles gain energy, and eventually they build up enough speed that the remnant can no longer contain them, and they escape into the Galaxy as cosmic rays.

One key question that scientists hope to answer with PAMELA data is whether the cosmic rays are continuously accelerated over their entire lifetime, whether the acceleration occurs just once, or if there is any deceleration.

Scientists say that determining the fluxes in the proton and helium nuclei will give information about the early Universe as well as the origin and evolution of material in our galaxy.

Adriani and his team hope to uncover more information with PAMELA to help better understand the origins of cosmic rays. They say possible contributions could be from additional galactic sources, such as pulsars or dark matter.

Abstract: PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra

Source: Science

Solar System’s Story Revealed in a Pea

False-color compositional x-ray image of the rim and margin of a ~4.6 billion-year-old calcium aluminum refractory inclusion (CAI) from the Allende carbonaceous chondrite. Credit: Erick Ramon and Justin Simon

[/caption]

Feast your eyes on some of the solar system’s earliest materials: the pink core comprises melilite, spinel and perovskite. The multi-colored rim contains hibonite, perovskite, spinel, melilite/sodalite, pyroxene, and olivine. This close-up reveals part of a pea-sized chunk of meteorite, a calcium-aluminum rich inclusion, formed when the planets in our solar system were still dust grains swirling around the sun — and it can tell an early part of the story about what happened next.

Pieces of the Allende meteorite, the largest carbonaceous chondrite ever found on Earth. Estimated to have been the size of a car, it broke up as it fell through the atmosphere in 1969, showering the ground in Chichuahua, Mexico, with hundreds of pieces, many collected for subsequent study. Credit: NASA

Meteorites have puzzled space scientists for more than 100 years because they contain minerals that could only form in cold environments, as well as minerals that have been altered by hot environments. Carbonaceous chondrites, in particular, contain millimeter-sized chondrules and up to centimeter-sized calcium-aluminum-rich inclusions, like the one shown above, that were once heated to the melting point and later welded together with cold space dust.

“These primitive meteorites are like time capsules, containing the most primitive materials in our solar system,” said Justin Simon, an astromaterials researcher at NASA’s Johnson Space Center in Houston, who led the new study. “CAIs are some of the most interesting meteorite components. They recorded the history of the solar system before any of the planets formed, and were the first solids to condense out of the gaseous nebula surrounding our protosun.”

For the new paper, which appears in Science today, Simon and his colleagues performed a micro-probe analysis to measure oxygen isotope variations in micrometer-scale layers of the core and outer layers of the ancient grain, estimated to be 4.57 billion years old.

All of these calcium-aluminum-rich inclusions, or CAIs, are thought to have originated near the protosun, which enriched the nebular gas with the isotope oxygen-16. In the inclusion analyzed for the new study, the abundance of oxygen-16 was found to decrease outward from the center of the core, suggesting that it formed in the inner solar system, where oxygen-16 was more abundant, but later moved farther from the sun and lost oxygen-16 to the surrounding 16O-poor gas.

Credit: Justin Simon/NASA

Simon and his colleagues propose that initial rim formation could have occurred as inclusions fell back into the midplane of the disk, indicated by the dashed path A above; as they migrated outward within the plane of the disk, shown as path B; and/ or as they entered high density waves (i.e., shockwaves). Shockwaves would be a reasonable source for the implied 16O-poor gas, increased dust abundance and thermal heating. The first mineral layer outside the core had more oxygen-16, implying that the grain had subsequently returned to the inner solar system. Outer rim layers had varying isotope compositions, but in general indicate that they also formed closer to the sun, and/or in regions where they had lower exposure to the 16O-poor gas from which the terrestrial planets formed.

The researchers interpret these findings as evidence that dust grains traveled over large distances as the swirling protoplanetary nebula condensed into planets. The single dust grain they studied appears to have formed in the hot environment of the sun, may have been thrown out of the plane of the solar system to fall back into the asteroid belt, and eventually recirculated back to the sun.

This odyssey is consistent with some theories about how dust grains formed in the early protoplanetary nebula, or propylid, eventually seeding the formation of planets.

Perhaps the most popular theory explaining the composition of chrondrules and CAIs is the so-called X-wind theory propounded by former UC Berkeley astronomer Frank Shu. Shu depicted the early protoplanetary disk as a washing machine, with the sun’s powerful magnetic fields churning the gas and dust and tossing dust grains formed near the sun out of the disk.

Once expelled from the disk, the grains were pushed outward to fall like rain into the outer solar system. These grains, both flash-heated chondrules and slowly heated CAIs, were eventually incorporated along with unheated dust into asteroids and planets.

“There are problems with the details of this model, but it is a useful framework for trying to understand how material originally formed near the sun can end up out in the asteroid belt,” said coauthor Ian Hutcheon, deputy director of Lawrence Livermore National Laboratory’s Glenn T. Seaborg Institute.

In terms of today’s planets, the grain probably formed within the orbit of Mercury, moved outward through the region of planet formation to the asteroid belt between Mars and Jupiter, and then traveled back toward the sun again.

“It may have followed a trajectory similar to that suggested in the X-wind model,” Hutcheon said. “Though after the dust grain went out to the asteroid belt or beyond, it had to find its way back in. That’s something the X-wind model doesn’t talk about at all.”

Simon plans to crack open and probe other CAIs to determine whether this particular CAI (referred to as A37) is unique or typical.

Source: Science and a press release from the University of California at Berkeley.