Solar System’s Story Revealed in a Pea

False-color compositional x-ray image of the rim and margin of a ~4.6 billion-year-old calcium aluminum refractory inclusion (CAI) from the Allende carbonaceous chondrite. Credit: Erick Ramon and Justin Simon

[/caption]

Feast your eyes on some of the solar system’s earliest materials: the pink core comprises melilite, spinel and perovskite. The multi-colored rim contains hibonite, perovskite, spinel, melilite/sodalite, pyroxene, and olivine. This close-up reveals part of a pea-sized chunk of meteorite, a calcium-aluminum rich inclusion, formed when the planets in our solar system were still dust grains swirling around the sun — and it can tell an early part of the story about what happened next.

Pieces of the Allende meteorite, the largest carbonaceous chondrite ever found on Earth. Estimated to have been the size of a car, it broke up as it fell through the atmosphere in 1969, showering the ground in Chichuahua, Mexico, with hundreds of pieces, many collected for subsequent study. Credit: NASA

Meteorites have puzzled space scientists for more than 100 years because they contain minerals that could only form in cold environments, as well as minerals that have been altered by hot environments. Carbonaceous chondrites, in particular, contain millimeter-sized chondrules and up to centimeter-sized calcium-aluminum-rich inclusions, like the one shown above, that were once heated to the melting point and later welded together with cold space dust.

“These primitive meteorites are like time capsules, containing the most primitive materials in our solar system,” said Justin Simon, an astromaterials researcher at NASA’s Johnson Space Center in Houston, who led the new study. “CAIs are some of the most interesting meteorite components. They recorded the history of the solar system before any of the planets formed, and were the first solids to condense out of the gaseous nebula surrounding our protosun.”

For the new paper, which appears in Science today, Simon and his colleagues performed a micro-probe analysis to measure oxygen isotope variations in micrometer-scale layers of the core and outer layers of the ancient grain, estimated to be 4.57 billion years old.

All of these calcium-aluminum-rich inclusions, or CAIs, are thought to have originated near the protosun, which enriched the nebular gas with the isotope oxygen-16. In the inclusion analyzed for the new study, the abundance of oxygen-16 was found to decrease outward from the center of the core, suggesting that it formed in the inner solar system, where oxygen-16 was more abundant, but later moved farther from the sun and lost oxygen-16 to the surrounding 16O-poor gas.

Credit: Justin Simon/NASA

Simon and his colleagues propose that initial rim formation could have occurred as inclusions fell back into the midplane of the disk, indicated by the dashed path A above; as they migrated outward within the plane of the disk, shown as path B; and/ or as they entered high density waves (i.e., shockwaves). Shockwaves would be a reasonable source for the implied 16O-poor gas, increased dust abundance and thermal heating. The first mineral layer outside the core had more oxygen-16, implying that the grain had subsequently returned to the inner solar system. Outer rim layers had varying isotope compositions, but in general indicate that they also formed closer to the sun, and/or in regions where they had lower exposure to the 16O-poor gas from which the terrestrial planets formed.

The researchers interpret these findings as evidence that dust grains traveled over large distances as the swirling protoplanetary nebula condensed into planets. The single dust grain they studied appears to have formed in the hot environment of the sun, may have been thrown out of the plane of the solar system to fall back into the asteroid belt, and eventually recirculated back to the sun.

This odyssey is consistent with some theories about how dust grains formed in the early protoplanetary nebula, or propylid, eventually seeding the formation of planets.

Perhaps the most popular theory explaining the composition of chrondrules and CAIs is the so-called X-wind theory propounded by former UC Berkeley astronomer Frank Shu. Shu depicted the early protoplanetary disk as a washing machine, with the sun’s powerful magnetic fields churning the gas and dust and tossing dust grains formed near the sun out of the disk.

Once expelled from the disk, the grains were pushed outward to fall like rain into the outer solar system. These grains, both flash-heated chondrules and slowly heated CAIs, were eventually incorporated along with unheated dust into asteroids and planets.

“There are problems with the details of this model, but it is a useful framework for trying to understand how material originally formed near the sun can end up out in the asteroid belt,” said coauthor Ian Hutcheon, deputy director of Lawrence Livermore National Laboratory’s Glenn T. Seaborg Institute.

In terms of today’s planets, the grain probably formed within the orbit of Mercury, moved outward through the region of planet formation to the asteroid belt between Mars and Jupiter, and then traveled back toward the sun again.

“It may have followed a trajectory similar to that suggested in the X-wind model,” Hutcheon said. “Though after the dust grain went out to the asteroid belt or beyond, it had to find its way back in. That’s something the X-wind model doesn’t talk about at all.”

Simon plans to crack open and probe other CAIs to determine whether this particular CAI (referred to as A37) is unique or typical.

Source: Science and a press release from the University of California at Berkeley.

When Will We Return to the Moon and Who Will it Be?

At the end of the movie “Apollo 13,” when the character of Jim Lovell says “I look up at the Moon and wonder, when will we be going back, and who will that be?” he probably didn’t have anything like the Google Lunar X PRIZE in mind. Similarly, when the GLXP was announced back in 2007, the founders had no idea that nearly 30 teams would be vying for the $30 million in incentive prizes to return to the Moon’s surface with a robotic craft.

Will Pomerantz, the former Senior Director of Space Prizes from the X PRIZE Foundation recalled an advisory committee meeting several years ago before the prize was announced. “We went around the room and asked everyone to estimate how many teams are going to compete in this,” Pomerantz said. “The answers ranged from zero on the low end to maybe a dozen or fifteen at the absolute max and that probably came either for myself or from Peter Diamandis, our founder. The fact that we have almost thirty blows us away, and we couldn’t be more thrilled.”

The X PRIZE Foundation recently announced the official roster of 29 teams that will attempt to send a robot to the Moon that travels at least 500 meters and transmit video, images, and data back to the Earth. The organization says this signifies a “new era of exploration’s diverse and participatory nature.”

The teams are headquartered all over the world — seventeen different headquarter nations — and most of the teams are actually multinationals, so team members are working in almost seventy different countries on every continent except for Antarctica.

“This is going to be the first time anything has been on the lunar surface since the final Soviet robotic mission in 1976,” Pomerantz said and those of us in the states really haven’t seen any data directly from the lunar surface since 1972, so we think that there’s at a ton to be learned scientifically, but also there’s a huge inspirational factor there for people to be able to see those images again.”

Of course, the robotic missions being designed are much less complicated and expensive than a human mission to the Moon.

Synergy Moon's spherical rover. Credit: GLXP

The concepts range from snake-like robots that slither along the surface to ball-shaped vehicles that can shift their mass internally move along the lunar surface to small robotic vehicles – “not too much bigger than the cell phone you’ve got your pocket,” Pomeranzt said – to rovers that look very much NASA- or ESA-designed vehicles. Others won’t rove at all, but reignite their engines to take off and fly to another location. This may allow them to explore totally different types of terrain that is totally inaccessible to a rover.

The landing sites that the various teams are shooting for differ as well. “Essentially everyone is going on the near side for obvious communication reasons,” Pomerantz said. “Almost everyone is going in a fairly low latitude and going in the equatorial zones.”

There are bonus prizes of several million additional dollars for teams that can go to particular sites, such the South Pole, where they could possibly confirm the findings at the LCROSS impact site, or if they go back to visit one of the Apollo landing sites or one of the sites of a non-human mission.

“I know that causes some concern for some people,” Pomerantz said. “People very rightly want to make sure that we are being respectful of those treasured historical sites. But I think it is important to recognize that no one values those sites more than the men and women around the world who are dedicating their careers to getting back to the surface of the Moon. They absolutely understand that those are our valuable treasures that need to be respected but they also understand that there’s an enormous amount to be gained from going back and respectfully revisiting the. There is some very interesting science that we can do by going back and seeing how the site and how those materials have changed over the past forty years.”

Why offer a prize to return to the Moon?

“We want to open the space frontier in the way similar to what we did it for the first X PRZE, the Ansari X PRIZE,” Pomerantz said. “We want to make space exploration and lunar exploration in particular radically cheaper. We think when you create a much lower price point, when you bring the price of missions down to a tenth to what it historically has been or even a hundredth of what it historically has been, you’re opening it up to a huge variety of new customers, new science communities, new industries that just can’t exist at the current price points.”

All the teams have to come up with their own funding.

“This is really a cash on delivery kind of model,” Pomerantz said. “But we don’t want to pay people to try. There are enough other people out there that are funding people to try new things. We want to reward people upon success. That means that no matter how crazy an idea might seem today, if it happens to be the best one, then we’ll reward it.”

Right now, the prize money is set to expire by the end of 2015, but the GLXP organizers are quite confident that at least one of the 29 teams will successfully reach the Moon before then. And obviously, NASA is confident, as well, as the space agency is offering a program called the Innovative Lunar Demonstration and Data Program, which is essentially $30 million dollars worth of data purchases from commercial efforts that reach the Moon.

“This is NASA saying for first time ever we are able to buy data about conducting lunar missions and about the Moon itself, rather than having to go out and pay for the acquisition of that data directly on the hopes that it will work,” Pomerantz said. “This is a great buy for NASA and I think they are getting a tremendous value and is a great way for teams to show their investors and supporters that, hey we’ve got a willing customer here. And NASA is not afraid of us; this isn’t an ‘us versus them competition.’ This is an area where our success is their success and vice versa.

Pomerantz is leaving the X PRIZE Foundation to begin work with Virgin Galactic. “I’ve loved every minute of being with the X PRIZE, but this was an opportunity just too good to pass up and I’m extremely excited about it even though I’m sad to be leaving X PRIZE.”

For more information about GLXP, see their website. See the complete roster of competing teams here.

Listen to an interview with Pomerantz on the 365 Days of Astronomy website.

Weather a concern for second OTV launch

The X-37B (OTV) sits safely cocooned inside its fairing at Cape Canaveral Air Force Station in Florida. Photo Credit: USAF

[/caption]
CAPE CANAVERAL – In preparation for the launch of the second of the U.S. Air Force’s Orbital Test Vehicles (OTV), the Air Force has released images of the OTV being encapsulated within the fairing that goes on top of the Atlas V AV-026 launch vehicle. Currently, the launch is scheduled to take place on Friday, March 4. The launch window is between 3:39 p.m. EDT and 5:39 p.m. EDT.

UPDATE: Due to weather concerns, the launch has been postponed until Saturday, March 5. Weather is predicted to improve to 40% favorable for launch.

The X-37B OTV is carefully sealed within its fairing. This then is hoisted to the top of the Atlas launch vehicle. Photo Credit: USAF

The tiny X-37B space plane is better known as the X-37B. The small spacecraft was designed to fit within the payload bay of the space shuttle. It currently is inside the Atlas’ 5-meter fairing. This is what is known as the X-37B Orbital Test Vehicle encapsulated assembly or EA. The EA being hoisted to the top of the rocket is one of the last major assembly endeavors before launch.

The X-37B, its nose pointed skyward is sealed inside its fairing. Photo Credit: USAF

The EA arrived at Cape Canaveral Air Force Station’s Space Launch Complex 41 (SLC-41) on Feb. 21. Currently weather conditions provide for a 70 percent chance of unfavorable conditions for launch. The primary causes for concern are gusty winds and Cumulus Clouds.

With the lights from a distant launch pad providing illumination the X-37B's EA trundles to its launch pad. Photo Credit: USAF

How Does the Shuttle Orbiter Get Attached to the External Tank and Solid Rocket Boosters?

Ever wondered how the space shuttle orbiter gets attached to the big external tank and the solid rocket boosters? This video shows the process — called “Lift and Mate” — where the shuttle Endeavour was put into a special harness, lifted high above the stacked ET and SRBs inside the Vehicle Assembly Building at Kennedy Space Center, and lowered into place. The orbiter is then bolted to the ET and SRBs. Endeavour’s Lift and Mate for its final flight took place on March 1, 2011. You can also see extremely high resolution, pan and zoom images of Endeavour lifted high in the VAB at the NASATech website. (High bandwidth warning! — but definitely worth it.) See the NASATech main page for the full variety of images.

Endeavour is scheduled to rollout to Launch Pad 39A next week for STS-134, with launch set for April 19. Even though this could be the final flight of the shuttle program (STS-135 is still not a certainty) many people are looking forward to this flight, as it will bring the Alpha Magnetic Spectrometer to the ISS. AMS is a particle physics detector designed to search for various types of unusual matter by measuring cosmic rays.

Incoming! New Camera Network Tracks Fireballs

http://science.nasa.gov/science-news/science-at-nasa/2011/01mar_meteornetwork/

How often have you seen a meteor streak across the sky and wondered where it came from and what it was? A new network of smart cameras that NASA is setting up will hopefully help answer those questions for as many fireballs as possible, at least in the US.

“If someone calls me and asks ‘What was that?’ I’ll be able to tell them,” said William Cooke, head of NASA’s Meteoroid Environment Office. With the new camera network, Cooke and his team hope to have a record of every big meteoroid that enters the atmosphere over the certain parts of the U.S. “Nothing will burn up in those skies without me knowing about it!” he added.

And the exciting part is that Cooke is looking to partner with schools, science centers, and planetaria willing to host his cameras.

It is estimated that every day about 100 tons of meteoroids — fragments of dust and gravel and sometimes even big rocks – enter the Earth’s atmosphere. But surprisingly, not much is known about the origin of all this stuff.

Groups of these smart cameras in the new meteor network will be able to automatically triangulate the fireballs’ paths, and special software will be able to compute their orbits.

In other U.S. meteor networks, someone has to manually look at all the cameras’ data and calculate the orbits – a painstaking process.

“With our network, our computers do it for us – and fast,” said Cooke.

[/caption]

The network’s first three cameras, each about the size of a gumball machine, are already up and running. Cooke’s team will soon have 15 cameras deployed east of the Mississippi River, with plans to expand nationwide.

How can you get involved? Here is the criteria for the locations Cooke is currently looking for:

1. Location east of the Mississippi River
2. Clear horizon (few trees)
3. Few bright lights (none close to camera)
4. Fast internet connection

The smart meteor network uses ASGARD (All Sky and Guided Automatic Realtime Detection) software, developed at the University of Western Ontario, which hosts the Southern Ontario Meteor Network, which took the video at the top of this article. The software processes the visual information and performs the triangulation needed to determine the orbits and origins of the fireballs.

The cameras can also provide information on where any potential meteorites may have landed, which is great for meteorite hunters and scientists. Getting a piece of a space rock is like a free sample return mission.

NASA's Smart Meteor Network is catching more than fireballs. Click on the image to see a movie where a bird stops to rest on one of the cameras in Georgia.

All cameras in the network send their fireball information to Cooke and to a public website. Teachers can contact Cooke at [email protected] to request teacher workshop slides containing suggestions for classroom use of the data. Students can learn to plot fireball orbits and speeds, where the objects hit the ground, how high in the atmosphere the fireballs burn up, etc.

But anyone can try meteor watching on their own, without being part of the network.

“Go out on a clear night, lie flat on your back, and look straight up,” Cooke said. “It will take 30 to 40 minutes for your eyes to become light adapted, so be patient. By looking straight up, you may catch meteor streaks with your peripheral vision too. You don’t need any special equipment — just your eyes.”

Then – if you are lucky to see some bright fireballs — you can check the fireball website to find out more information about what you saw.

Source: Science@NASA

NASAs Navy tows Discoverys Last Rocket Boosters into Port Canaveral – Photo Album

Freedom Star tows Solid Rocket Booster (SRB) from Discovery’s last llight. NASA’s Solid Rocket Booster Retrieval Ship - Freedom Star - tows one of Discovery’s booster from the Atlantic Ocean into the entrance of Port Canaveral on its journey to Hangar AF at Cape Canaveral Air Force Station in Florida. Seagulls help guide NASA’s Navy into port. Credit: Ken Kremer

[/caption]

As the Space Shuttle program quickly winds down, one of the lesser known facts is that the public can get a free bird’s eye view of the ocean retrieval of the mighty Solid Rocket Boosters which power the orbiters majestic climb to space. All you have to do is stand along the canal of Port Canaveral, Florida as the rockets float by on their journey to a processing hanger at Cape Canaveral Air Force Station.

And if you own a boat you can sail right along side for the thrilling ride as the boosters are towed by ship from the Atlantic Ocean into the entrance of Port Canaveral. It’s the same route traveled by the humongous cruise ships setting sail for distant ports on Earth.

NASA’s Navy has recovered the twin Solid Rocket Boosters (SRB’s) used during space shuttle Discovery’s final flight. See my photo album above and below.

The two SRB’s and associated flight hardware are retrieved after they splashdown in the Atlantic Ocean following every shuttle launch by the NASA owed ships named Freedom Star and Liberty Star.

Discovery SRB in tow in the Atlantic Ocean by Freedom Star Retrieval Ship. Credit: Ken Kremer

Freedom Star and Liberty Star are stationed about 10 miles from the impact area at the time of splashdown. The ships then sail to the SRB splashdown point and divers are deployed to attach tow lines, haul in the parachutes used to slow the descent and install dewatering equipment.

Each vessel tows one SRB all the way from the Atlantic Ocean into Port Canaveral and then through the locks to Cape Canaveral Air Force Station. After the spent segments are decontaminated and cleaned, they will be transported to Utah, where they will be refurbished and stored, if needed.

Discovery SRB in tow past a flock of birds at Atlantic Ocean entrance to Port Canaveral. Credit: Ken Kremer

The unique ships were specifically designed and constructed to recover the SRB’s. The SRB’s separate from the orbiter about two minutes after liftoff. They impact in the Atlantic about seven minutes after liftoff and some 100 nautical miles downrange from the launch pad off the Florida coastline.

The STS-133 mission was launched from pad 39A at NASA’s Kennedy Space Center on Feb. 24 on Discovery’s 39th and last space flight. Landing is slated for March 8 at 11:36 a.m. at KSC.

The all veteran six person crew has successfully attached the Leonardo storage module and completed two space walks. Leonardo is packed with the R2 humanoid robot and tons of science gear, spare parts, food and water.

Photo album: Recovery and Retrieval of Solid Rocket Boosters from Space Shuttle Discovery’s final flight to space on STS-133 mission.

Close up of forward segments of SRB in tow minus the nose cap which separates at 2.5 nautical miles altitude and releases a parachute. Lighthouse in the background. Credit: Ken Kremer
Freedom Star - NASA’s Solid Rocket Booster Retrieval Ship. Credit: Ken Kremer
Pleasure boats navigate for birds eye view alongside water retrieval of the shuttles Solid Rocket Boosters in Port Canaveral. Credit: Ken Kremer
Rear view to SRB Aft Skirt from the Jetty Park Pier at Port Canaveral. Credit: Ken Kremer
Onlookers fish from rocky outcrops as SRB’s - which generate 3 million pounds of liftoff thrust - float by on a gorgeous afternoon in sunny Florida. What an incredible sight ! Credit: Ken Kremer
Liberty Star with SRB alongside in hip tow position in Port Canaveral. Frustrum of a forward aft skirt assembly is visible on deck of Liberty Star at left. Credit: Ken Kremer
Close up of Frustrum of a forward aft skirt SRB assembly on deck of Liberty Star in Port Canaveral. Credit: Ken Kremer
NASA’s Freedom Star and Liberty Star Solid Rocket Booster Retrieval Ships
docked in Port Canaveral. Both of NASA’s SRB retrieval ships are pictured here with boosters alongside. Credit: Ken Kremer
Ken Kremer at tow back of Discovery’s SRB’s by NASA’s Retrieval Ship Freedom Star. Credit: Urijan Poerink

Space Station 3-D by Thierry Legault

The ISS and shuttle Discovery as captured -- and annotated -- by Thierry Legault

[/caption]

Run — don’t walk — to astrophotographer Thierry Legault’s website to see his latest incredible video of the International Space Station and a docked space shuttle Discovery. He sent us a note that he had great “seeing” from Weimar, Germany on Monday evening, where he has set up shop in order to capture the orbiting spacecraft as many times as possible during the STS-133 mission. The detail is stunning, — more detail even than his previous video from last weekend — as evidenced in the annotated image above. Legault has even created a 3-D movie — no special 3-D glasses required. He has instructions on his website of how to cross your eyes and squint to get the 3-D effect. “This method may require a bit of training if you are not used to squinting but it gives a very realistic view,” Legault explained. See the videos and find out how he creates these amazing views on his website.

Where In The Universe Challenge #139

It’s time once again for another Where In The Universe Challenge. Name where in the Universe this image was taken and give yourself extra points if you can name the telescope or spacecraft responsible for the image. Post your guesses in the comments section, and check back on later at this same post to find the answer. To make this challenge fun for everyone, please don’t include links or extensive explanations with your answer. Good luck!

UPDATE: The answer has now been posted below.

This is an image from the Cassini spacecraft of vertical structures in Saturn’s main rings. These unexpected structures rise abruptly from the edge of Saturn’s B ring to cast long shadows on the ring. This image was taken in 2009.

Part of the Cassini Division, between the B and the A rings, appears at the top of the image, showing ringlets in the inner division. Cassini’s narrow angle camera captured a 1,200-kilometer-long (750-mile-long) section arcing along the outer edge of the B ring, and it is estimated the vertical structures tower as high as 2.5 kilometers (1.6 miles) above the plane of the rings — a significant deviation from the vertical thickness of the main A, B and C rings, which is generally only about 10 meters (about 30 feet).

See more about the image on the Cassini website.

New Study: Sun’s Deep Physics Explain Sunspot-Free Days

Image credit: NASA/Goddard/SDO-AIA/JAXA/Hinode-XRT; Artistic rendering: Cygnus-Kolkata/William T. Bridgman; Conceptualization and simulation data: Dibyendu Nandy, Andres Munoz-Jaramillo and Petrus C.H. Martens.

[/caption]

The long lull in sunspots at the end of Solar Cycle 23 wasn’t just fodder for global cooling predictions — it gave solar physicists plenty to study. And a new computer analysis may have come up with a fairly simple explanation for the sun’s odd quiet. Lead author Dibyendu Nandy, of the Indian Institute of Science Education and Research in Kolkata, and his colleagues report in Nature today that the long string of sunspot-free days between solar cycles 23 and 24 may directly correlate with the speed of north-south flow of plasma toward the sun’s equator. Their collage, above, shows magnetic fields in the interior of the Sun simulated using a solar dynamo model (center) and the observed solar corona at two different phases of solar activity: A quiescent phase during the recent, unusually long minimum, at right, and a comparatively active phase following the minimum, at left.

This visible-light photograph, taken in 2008 by NASA's Solar and Heliospheric Observatory (SOHO) spacecraft, shows the Sun's face free of sunspots. Credit: NASA/SOHO

The sun’s magnetic activity varies periodically, exhibiting an ~11-year cycle that can be monitored by observing the frequency and location of sunspots. Sunspots are strongly magnetized regions generated by the sun’s internal magnetic field and are the seats of solar storms that generate beautiful auroras but also pose hazards to satellites, navigation technologies like GPS and communications infrastructures.

Towards the end of solar cycle 23, which peaked in 2001 and wound down in 2008, the Sun’s activity entered a prolonged minimum, characterized by a very weak polar magnetic field and an unusually large number of days without sunspots: 780 days between 2008 and 2010. In a typical solar minimum, the sun goes spot-free for about 300 days, making the last minimum the longest since 1913.

The study authors conducted magnetic dynamo simulations of 210 sunspot cycles spanning some 2,000 years while varying the speed of the solar internal meridional (north-south) plasma flow. The sun’s plasma flows much like Earth’s ocean currents: rising at the equator, streaming toward the poles, then sinking and flowing back to the equator. At a typical speed of 40 miles per hour, it takes about 11 years to make one loop.

Nandy and his colleagues discovered that the Sun’s plasma rivers speed up and slow down like a malfunctioning conveyor belt, probably due to complicated feedback between the plasma flow and solar magnetic fields.

“It’s like a production line – a slowdown puts distance between the end of the last solar cycle and the start of the new one,” said study co-author Andres Munoz-Jaramillo, a visiting research fellow at the Harvard-Smithsonian Center for Astrophysics.

Specifically, the authors write, a fast meridional flow in the first half of a cycle, followed by a slower flow in the second half, leads to a deep sunspot minimum — and can reproduce the observed characteristics of the cycle 23 minimum.

Nandy and his colleagues say continued solar observations will be key to confirming and elaborating on the modeling results.

“We anticipate that NASA’s recently launched Solar Dynamics Observatory will provide more precise constraints on the structure of the plasma flows deep in the solar interior, which could be useful for complementing these simulations,” they write.

Source: Nature and the Harvard-Smithsonian Center for Astrophysics.

Glory Launch Gets Another Go

Credit: NASA/Randy Beaudoin, VAFB

[/caption]

NASA will try again to launch its “climate change satellite” on Friday, following an attempt that was scrubbed on Feb. 23 due to technical issues with ground support equipment for the Taurus XL launch vehicle, shown at right.

The March 4 liftoff is targeted for just after 2 a.m. local time at the Vandenberg Air Force Base in California (5:09:43 a.m. eastern).

Two instruments aboard Glory will help address influences on Earth’s climate. The Total Irradiance Monitor led by Greg Kopp at the Boulder, Colorado-based Laboratory for Atmospheric and Space Physics will continue a decades-long measurement of the sun’s energy reaching Earth, and Raytheon’s Aerosol Polarimetry Sensor will track aerosols in Earth’s atmosphere. See a more detailed story about the mission.

NASA will stream coverage of the launch starting at 3:30 a.m. eastern time on March 4. Real-time updates of countdown and launch milestones will also be posted on NASA’s launch blog.

Source: NASA announcement via Eurekalert!