Sky & Telescope Magazine Editor Emeritus, Leif J. Robinson, Passes Away,

Leif J. Robinson courtesy of Sky & Telescope

[/caption]

For those of us who have dreamed over the stars for years while reading Sky & Telescope magazine, we respectfully remember Leif J. Robinson, who served for 20 years as Editor in Chief. He passed away Sunday at the age of 71 at his home in Costa Rica.

According to the S&T Press release, Robinson worked 38 years on the staff of Sky & Telescope and served as Editor in Chief from 1980 to 2000. Sky & Telescope is a monthly magazine based in Cambridge, Massachusetts. First published in November 1941, the magazine is approaching its 70th anniversary, and it remains the world’s most influential popular magazine about astronomy.

“Leif was a towering figure in the history of Sky & Telescope, and he tirelessly promoted the capabilities and achievements of amateur astronomers,” says current S&T Editor in Chief Robert Naeye. “During his tenure, S&T’s circulation grew significantly, and the magazine’s stature grew by leaps and bounds in the amateur and professional communities.”

“Every one of us who worked with Leif was inspired by his strong leadership, which emphasized journalistic and ethical principles of accuracy and integrity. These core values continue to guide everything we do at S&T,” adds Senior Editor Dennis di Cicco, who worked with Robinson at S&T for more than 25 years and remained in close contact after his retirement.

Robinson was born May 21, 1939, in Connecticut. He moved to Southern California in 1954 and became an active member in the Los Angeles Astronomical Society. Shortly thereafter he began writing articles for Sky & Telescope about lunar cartography.

While visiting his grandparents in Connecticut in 1962, he received a telegram offering him a job at S&T. Robinson initially planned to reject his offer so he could complete his studies at UCLA. But he decided to accept it after talking with S&T office staffer Caroline Nason, whom he would later marry. Robinson held several editorial positions until 1980, when he was named S&T’s third Editor in Chief following the sudden death of Joseph Ashbrook.

During his 38-year tenure on the editorial staff, Robinson became a champion of professional-amateur collaborations. S&T’s tradition of promoting such partnerships continues to this day. Seeing the potential of rapidly evolving digital technology in the 1980s, Robinson lobbied professionals to take amateur observations seriously, an effort that has been amply rewarded with major amateur contributions in many different fields, from discovering asteroids, comets, and supernovae to hunting for and characterizing planets around other stars. “I was one of the few people to walk in both communities with equal facility,” said Robinson. “I could relate CCD cameras to the amateur and I could relate science to the amateur.”

Robinson officially retired on December 31, 2000. But he remained active until the very end of his life. He wrote the popular “50 & 25 Years Ago” column for Sky & Telescope, and he continued to give talks to general audiences and amateur astronomers. From 2001 to 2005 he served on the Board of Directors of the Astronomical Society of the Pacific. Besides his career at S&T, Robinson was a world-class birdwatcher, and he authored the book Outdoor Optics.

“Today is a day of mourning at S&T, but we are also celebrating his life and contributions. Leif’s legacy will always remain a part of who we are and what we do,” says S&T Senior Editor Alan MacRobert, who worked with Robinson for 18 years.

Robinson is survived by his second wife “Ollie,” son Leif, Jr., and daughter Kara.

Unique Perspective: Shuttle Launch as Seen from Airplane, Balloon, and Freefall

This frame grab from a video -- shot by a GoPro Hero Motorsport camera aboard the Robonaut-1 balloon -- shows the shuttle Discovery streaking toward space on its final mission. The shot was taken at 5:05 EST on Feb. 24, 2011 as the balloon was traveling through the troposphere. Credit: Quest for Stars/Challenger Center

I thought I had a great view of space shuttle Discovery’s final launch, seeing it from the Kennedy Space Center press site. But there were a few other people who had a pretty unique perspective on the launch. A passenger on an airplane, Neil Monday, who was flying out of the Orlando, Florida airport, recorded the shuttle launch with his iPhone, above. That is just awesome. Want more unique views of the launch?


[/caption]

The students from Quest For Stars who were attempting to capture an image of Discovery’s launch from a high altitude balloon (see our preview article) were successful and the team has released a couple of images, including the one above. They say they will be releasing the “best of the best” of their images later this week at the Next Generation Suborbital Research conference. They have a great video of their balloon popping, sending their payload into a quick freefall.

Fred Leslie jumps from an aircraft as Discovery lifts off behind him. Image via the Hunstville Times, courtesy of Fred and Kathy Leslie.

Speaking of freefall, former astronaut Fred Leslie and his wife Kathy wanted to do something special to commemorate Discovery’s final launch. They jumped from an aircraft over Deland, Fla., and timed it so they could get a photograph with Discovery taking off in the background. Read more about it in the Huntsville Times.

And of course, if you want to see more launch images, we have a great gallery of the STS-133 launch as seen by our cadre of reporters and photographers who were on hand for Discovery’s historic launch.

Scientists to go Suborbital for Research

Virgin Galactic's SpaceShipTwo during a test flight. Suborbital science experiments fly aboard this craft, as well as Blue Origin's New Shepard, and other suborbital flights, providing scientists, students, and others with valuable microgravity access. Credit: Virgin Galactic

[/caption]

Think again if you believe the suborbital space market is exclusively for well-heeled tourists. The Southwest Research Institute has just inked deals with Virgin Galactic and XCOR Aerospace to fly up to 17 scientific research flights. Three scientists, including Dr. Alan Stern, former head of the Science Mission Directorate at NASA and current New Horizons Principal Investigator, will become some of the first scientists to fly on a commercial spacecraft to conduct scientific research. They will fly on board Virgin’s SpaceShipTwo and XCOR’s Lynx.

“We’re another step closer to the era of routine ‘field work’ in space research,” said Dr. Dan Durda, another SwRI scientist who is scheduled to fly. “More and more researchers will soon fly with their own experiments in space, and do it regularly enough to allow the important advances that come with iterative investigations. I’m looking forward to that future and helping it become a reality.”


“We at SwRI are very strong believers in the transformational power of commercial, next-generation suborbital vehicles to advance many kinds of research,” said Stern. “We also believe that by putting scientists in space with their experiments, researchers can achieve better results at lower costs and a higher probability of success than with many old-style automated experiments.”

Alan Stern is ready to go to space. Credit: SwRI

The spacecraft will fly on short suborbital flights to altitudes greater than 107,000 meters (350,000 feet) above the internationally recognized boundary of space.

At least two SwRI researchers will fly on SpaceShipTwo, which can carry two pilots and up to six researchers, and later, there will be a dedicated six-seat research mission SS2. SpaceShipTwo’s large cabin enables researchers to work together in an “out-of-seat” micro gravity environment.

XCOR's Lynx suborbital vehicle. Credit: XCOR

SwRI researchers will also fly at least six high altitude missions aboard XCOR Corporation’s Lynx Mark I high-altitude rocket plane, which carries a pilot and a single researcher at altitudes up to 200,000 feet. Lynx I is currently in development, with test flights expected to begin in 2012.

The types of research planned includes biomedical, microgravity and astronomical imaging experiments.
Besides Stern andDurda, Dr. Cathy Olkin is also scheduled to fly on the research flights. All three scientists selected have trained for suborbital spaceflight aboard zero-G aircraft, in NASTAR centrifuges and aboard Starfighter F-104 jet fighters in the last year.

“This is a historic moment for spaceflight,” said Commercial Spaceflight Federation Executive Director John Gedmark. “A scientific research institution is spending its own money to send its scientists to space. I expect that these scientists will be the first of many to fly to space commercially. As the scientific community realizes that they can put payloads and people into space at unprecedented low costs, the floodgates will open even wider.”

Sources: SwRI, Commercial Spaceflight Federation

Meteorites May Have Delivered First Ammonia for Life on Earth

Researchers have teased ammonia of a carbon-containing meteorite from Antarctica, and propose that meteorites may have delivered that essential ingredient for life to an early Earth.

The results appear today in the Proceedings of the National Academy of Sciences, and add to a growing body of evidence that meteorites may have played a key role in the development of life here. The NASA graphic at left was released just last month, when researchers reported that meteorites may have also delivered Earth’s first left-hand amino acids.

A Renazzo stony meteorite. Credit: NASA

Lead author Sandra Pizzarello, of Arizona State University, and her colleagues note in the new paper that carbonaceous chondrites are asteroidal meteorites known to contain abundant organic materials.

“Given that meteorites and comets have reached the Earth since it formed, it has been proposed that the exogenous influx from these bodies provided the organic inventories necessary for the emergence of life,” they write.

The carbonaceous meteorites of the Renazzo-type family (CR) are known to be especially rich in small soluble organic molecules, such as the amino acids glycine and alanine. To test for the presence of ammonia, the researchers collected powder from the much-studied CR2 Grave Nunataks (GRA) 95229 meteorite and treated it with water at high temperature and pressure. They found that the treated powders emitted ammonia, NH4, an important precursor to complex biological molecules such as amino acids and DNA, into the surrounding water.

Next, the researchers analyzed the nitrogen atoms within the ammonia and determined that the atomic isotope did not match those currently found on Earth, eliminating the possibility that the ammonia resulted from contamination during the experiment. Researchers have struggled to pinpoint the origin of the ammonia responsible for triggering the formation of the first biomolecules on early Earth. The authors suggest that now, they may have found it.

“The findings appear to trace CR2 meteorites’ origin to cosmochemical regimes where ammonia was pervasive, and we speculate that their delivery to the early Earth could have fostered prebiotic molecular evolution,” they write.

Source: Pizzarello et al.Abundant ammonia in primitive asteroids and the case for a possible exobiology.

Review: Apollo 12 On the Ocean of Storms

David M. Harland has detailed man's first precision landing on the moon in: Apollo 12 On the Ocean of Storms. Image Credit: Spinger/Praxis

[/caption]

As one chapter in manned space flight draws to a close, it is human nature to look back, to draw parallels and to remember similar points in time. A new offering from Springer-Praxis details man’s second landing on the surface of another world, the 1969 mission of Apollo 12. The book is entitled; Apollo 12 On the Ocean of Storms. Strangely, this is the first time that the full story of man’s first trip to the Ocean of Storms has ever been written down. The story in-and-of-itself is compelling, filled with peril, discovery and friendship.

President Nixon was at the launch, but a storm had blown in. The launch went ahead regardless and the Saturn V rocket thundered into the sky – where it was struck twice by lightning. The lightning traveled down the rocket’s plume and struck the pad. On board the Yankee Clipper (the Command Module in which the crew rode), fuel cells, inertial guidance platform and telemetry system went offline.

EECOM John Aaron in Mission Control, with the help of Lunar Module Pilot Alan Bean, saved the day by remembering an obscure procedure, and once in orbit the spacecraft was restored to full operation.

By setting down on the Moon close by an unmanned probe, Apollo 12 showed that precision lunar landings were possible, that microbes could survive for years inside such a robot in that harsh environment – and that friends can make the best crewmates.

This is just a tiny hint of the richly detailed story that is Apollo 12. When it came time to select an author to tell this tale, Springer tapped one of the best in the business – David M. Harland.

Harland is one of the most prolific, accurate authors in his field of expertise – aerospace history. As such, when he started to cover the Apollo era, fans were waiting with great anticipation for his chronicles covering the greatest era in human exploration.

The crew of Apollo 12, from left-to-right, Pete Conrad, Dick Gordon and Alan Bean. Photo Credit: NASA

“I wrote this book as part of my series on NASA’s Moon program. I started with Apollo 11, and will work sequentially with books devoted to each of the missions which landed on the Moon, explaining the planning, assembly of the vehicles, launch through to splash, and the scientific insight gained,” said Harland during a recent interview. “People tend to remember the Apollo 8 flight around the Moon at Christmas 1968, the Apollo 11 landing, and the aborted Apollo 13 mission. Yet the missions which followed Apollo 11 and landed on the Moon were far more than ‘flags and footprints’, they were scientific exploration – indeed as one of the astronauts said, ‘exploration at its greatest’. I’m delighted that Springer-Praxis has given me the freedom to write this series.”

Springer Praxis has developed a virtual library’s worth of books regarding space flight. Apollo 12 On the Ocean of Storms is a very worthy addition to this collection and can be found online at Amazon.com. The book includes 530 pages with dozens of historic, color images.

Alan Bean looks out on the moon's Ocean of Storms. David M. Harland has produced a vivid, detailed account of this amazing journey in Apollo 12 On the Ocean of Storms. Photo Credit: NASA

Incredible Video of Shuttle Approaching ISS, Taken from Earth

The International Space Station and shuttle Discovery, about 30 minutes before docking. Credit: Theirry Legault.

[/caption]

Award winning photographer Theirry Legault sent us a note about some amazing new video he shot of the space shuttle Discovery getting ready to dock with the space station. Legault took the video on Saturday evening (Feb. 26, 2011) at 18:40 UT from Germany, showing Discovery and the ISS about a hundred meters apart, 30 minutes before docking. The image above is a still frame from the video, which can be seen on Legault’s website here. “It’s sunset on the ISS at the end of the video sequence,” Legault wrote. “The video is accelerated 2.5 times (acquisition at 10 fps, video at 25 fps). The altitude of the ISS is 360 km (200 miles)… and the speed of ISS is 17,000 miles per hour (27,350 kph) and its angular speed at zenith is 1.2° per second.”

Flash is required to see the video. The 900 frames of the sequence has been registered and combined by groups of 10 (processing with Prism and VirtualDub), Legault said. Find out more about Legault’s photography and tracking equipment at this page on his website.

If you recall, Legault has also taken images of the ISS and docked shuttle Endeavour transiting the Sun, and Atlantis and the Hubble Space Telescope transiting the Sun, as well as many other amazing images shot from Earth.

The detail Legault has captured is incredible, and a joy to see. Check out more on his website.

Another Ceasing Cepheid

a

[/caption]

Earlier this year, I wrote an article about a Cepheid variable star named V19 in M31. This Cepheid was one that once pulsated strongly and was one of the variables Hubble first used to find the distance to the Andromeda galaxy. But today, V19 is a rare instance of a Cepheid that has seemingly, stopped pulsating. Another example of this phenomenon is that of Polaris, which has decreased in the amplitude of brightnesses by nearly an order of magnitude in the past century, although some reports indicate that it may be beginning to increase again. Meanwhile, a new paper is looking to add another star, HDE 344787, to this rare category and according to the paper, it may be “even more interesting than Polaris”.

The star in question, HDE 344787, is a F class supergiant. Although the variations in brightness have been difficult to observe, due to their small amplitude, astronomers have revealed two fundamental pulsation modes corresponding to 5.4 days and 3.8 days. But perhaps even more interesting, is that the 5.4 day period seems to be growing. Careful analysis of the data suggests that this period is growing by about 13 seconds per year. This finding is in strong agreement with what is predicted by models of stellar evolution for stars with metallicity similar to the sun passing through the instability strip for the first time.

HDE 344787 is similar in Polaris in that both stars share the same spectral type. However, the existence of two modes of pulsation is not seen in Polaris. The lengthening of the period of pulsation, however, is seen. For Polaris, its variation is growing by 4.5 seconds per year. Another similarity is that, like Polaris and V19, has been decreasing in the amplitudes of its brightness since at least 1890.

While the addition of this star to the collection of Cepheids that have decreased their amplitude, it does little to solve the mystery of why they might do so. Currently, both Polaris and HDE 344787 lie near the middle of the instability strip and, as such, are not simply evolving out of the region of instability. However, the confirmation of second pulsational mode may lend support to the notion that a change in one of these modes may serve to dampen the other, creating an effect known as the Blazhko Effect.

Ultimately, this star will require further observations to understand its nature better. Due the the faintness of this star (~10th magnitude) as well as the small change in brightness from the pulsations and the dense stellar field on which it lies, observations have been notoriously challenging.

Naturally Jupiter

As we know, Jupiter’s Southern Equatorial Belt has been missing beneath its icy clouds for almost a year now. While astronomers are able to use instruments like Keck – complete with infrared and adaptive optics – we here on Earth have to take our views of Jupiter a little more naturally.

As you can see from this webcam image given to us by John Chumack, even our thin earthly clouds can’t quite hide bright Jupiter. It has returned to the same ruddy, lined face that most of us fell in love with the first time we observed it. Stunning details? No… Because this is how Jupiter really looks when you first glimpse it in the eyepiece.

Right now the westering Jupiter isn’t in the best of positions for extended observing, but it is at a comfortable height and a comfortable time. While it might be tempting to throw a huge amount of magnification its way, it actually makes the view worse rather than improving it. With steady seeing condtions, around 150-200X is ideal – reducing the magnification even lower if the atmosphere is turbulent. You’ll find you’ll also have greater success using your orthoscopic or plossl design eyepieces, too. Got color filters? Go ahead and experiment! Blues, reds and yellows all cause contrast change which can reveal subtle details. As unusual as it may sound, sketching also helps. You don’t need to be a Rembrandt. Just the act of translating what the eye sees onto paper greatly improves your “human” focus.

Don’t forget the galiean moons! As you can see, Europa can look like a world of its own. While larger aperture instruments are able to resolve events like shadow transits, don’t feel left out if you have a small telescope. It’s very exciting to witness one of Jupiter’s satellites being eclipsed by the parent planet – or disappearing as it passes in front. There are even times when the moons eclipse each other! Go on… Take advantage of the early evening hours and enjoy Jupiter.

Because you never know when the perfect moment seeing will arrive…

Many thanks to John Chumack of Galactic Images for sharing his recent image of Jupiter with us.

Leland Melvin remembers the past as he looks forward

Leland Melvin (right) talks education at NASA's Kennedy Space Center. He is standing next to Stephan Turnipseed, president of LEGO Education North America. Photo Credit: Mike Killian

[/caption]

CAPE CANAVERAL – Most people struggle to find a new path when their primary career ends unexpectedly. Some say that it’s hard to get ahead in this world. Then there are those that prove it is possible to have a vibrant second career and that it is possible to make it – in spades. Leland Melvin is one of those people.

Back in 1986 it seemed he would be a wide receiver for the NFL. Then an injury sidelined him when he was training with the Detroit Lions. He tried again the following spring with the Dallas Cowboys – but the same injury resurfaced and dashed his NFL hopes. Few manage to pull off a second high-caliber career after such a setback. But Melvin did just that – he went on to join one of America’s most elite clubs – he became an astronaut.

He went on to fly on two space shuttle missions, STS-122 and STS-129, both onboard Atlantis, both to the International Space Station (ISS).

Melvin suits up in preparation to launcing with his Atlantis crewmembers to orbit. Photo Credit: NASA

He didn’t start out with the plan to be an astronaut however; in fact he really didn’t think that he would work for the space agency. A job fair, of all things, helped him become an engineer at NASA’s Langley Research Center.

“I really didn’t think I wanted to be with NASA,” Melvin said during an interview at NASA’s Kennedy Space Center just before the shuttle Discovery launched on its final mission. “This one lady would have none of it. I helped her with her bags and she helped me with my career.”

Melvin got accepted as an astronaut in 1998. However, he never drifted far from his roots – and those were firmly planted in education. After he completed his missions to space, his mind and his path went back to education. In October of 2010 he was selected as NASA’s Associate Administrator for Education.

Leland Melvin was a mission specialist on STS-129 which launched to the International Space Station in 2009. Photo Credit: NASA

Since selected he has worked to make NASA’s education elements a more hands-on affair. Melvin has become a tireless advocate of NASA’s Summer of Innovation, Explorer Schools as well as the numerous other education programs that the space agency supports. One of his responsibilities is to raise public awareness about how much NASA does to support education. It was in that capacity that he was at Kennedy Space Center on launch day.

For some, coming down to a shuttle launch is a perk of the job; Melvin seemed far more interested with getting the word out about NASA’s educational outreach efforts, jumping from one interview to the next.

Leland Melvin was all set to play in the NFL before an injury changed his plans. He became an astronaut, but still remains dedicated to the goal of education. Photo Credit: NASA

“People really don’t realize how much of a tremendous investment that NASA truly is,” said Melvin. “Basically, for every dollar they put in – they get eighteen dollars in return. Out of every tax dollar, I think it boils down to one-seventh of one cent goes to NASA – for that the public gets the astronaut corps, the shuttle, space station, all the probes to the planets, on and on…it’s really an incredible deal.”

Melvin’s life has been shaped by education, from his parents, to his experiences in college and now with NASA. Sometimes, Melvin takes a second from the frenetic pace of his job and looks back.

“Education has always been important to me, I got that from my parents,” said Melvin. Both of his parents were teachers, a fact he is reminded about whenever he visits his hometown of Lynchburg, Virginia. “People still come up to me and thank me for what my father did for them.”

Leland Melvin sees his experiences with NASA as proof that people can do pretty much whatever they want to - they just have to set their minds to it. Photo Credit: NASA

Discovery Docks at Space Station on Historic Final Voyage with First Human-Robot Crew

Space Shuttle Discovery linked up to the International Space Station (ISS) today, Feb. 26, for her 13th and final time on her historic last mssion to space. Credit: NASA

[/caption]

Space Shuttle Discovery linked up to the International Space Station (ISS) today, Feb. 26, on her historic final voyage and still charting new frontiers by carrying the first ever joint space crew of humans and robots.

The all veteran human crew is comprised of five men and one women including Commander Steve Lindsey, Pilot Eric Boe and Mission Specialists Alvin Drew, Steve Bowen, Michael Barratt and Nicole Stott. For the first time in the history of manned spaceflight, the humans are joined by a robotic companion named R2 or Robonaut 2. R2 is the first humanoid robot in space and will become an official member of the ISS crew.
See Discovery Launch, Docking and Robonaut photo album below.

Discovery docked at the ISS at 2:14 p.m. EST at the Harmony node while flying some 220 miles above western Australia. The shuttle arrived after a two day orbital chase that commenced with a picture perfect blast off on Feb. 24 from the Kennedy Space Center in Florida.

Shuttle Commander Steve Lindsey manually flew Discovery to join the two ships together. They have a combined mass of over 1.2 million pounds. This was Discovery’s 13th and final docking to the orbiting outpost. Discovery also was the first shuttle to dock to the ISS on the STS-96 mission on May 29, 1999.

After allowing the relative motions between the two ships to dampen out, the vehicles were then hard mated together. Hatches between the spacecraft were opened at 4:16 p.m. EST and the six Shuttle astronauts floated through the docking tunnel and into the station. They were welcomed by the six current residents already living and working aboard the ISS and thereby doubled the ISS human population to 12.

Prior to docking, Discovery executed a spectacular head over heels “back flip” with Commander Lindsey at the controls so that ISS crew members Paolo Nespoli and Cady Coleman could take hundreds of high resolution photographs of the shuttles critical heat shield tiles.

Over a period of nine minutes, Discovery rotated backward through a full 360 degrees during the dramatic maneuver with Earth as the backdrop.

The fragile thermal protection system (TPS) tiles protect the orbiter from the scorching heat generated during reentry through the Earth’s atmosphere. Specialists on the ground at the Johnson Space Center will pore over the images to look for any signs of tile damage which may have occurred during launch or on orbit.

Discovery’s cargo bay is loaded with a large new pressurized storage room and critical space parts for the space station. The primary goal of the STS-133 mission is to attach the new Permanent Multipurpose Module named “Leonardo” to the ISS which will provide additional living space for the station crews.

R2 is packed inside Leonardo along with science equipment, spare parts, clothing, food and assorted gear. The robot will serve as an assistant to the ISS astronauts and conduct science experiments and maintenance chores.

The twin brother of the R2 Robonaut and their NASA/GM creators at KSC.
Robonaut 2 and the NASA/GM team of scientists and engineers watched the launch of Space Shuttle Discovery and the first joint Human-Robot crew on the STS-133 mission on Feb. 24, 2011 from the Kennedy Space Center. Credit: Ken Kremer

See a stunning 360 degree panorama of Robonaut 2 at KSC from nasatech.net at this link

The twin brother of R2 eagerly watched the Feb, 24 blastoff of Discovery and crew live from nearby the famous countdown clock at the Kennedy Space Center.

The 11 day flight includes two spacewalks.

With Discovery safely docked , the ISS is now the biggest it has even been and is currently configured with all vehicles which fly to the station including the newly arrived ATV from Europe, HTV from Japan and Soyuz and Progress spacecraft from Russia.

The ATV itself arrived docked barely 4 hours before Discovery in a critical operation that paved the way for blastoff of the STS-133 mission and reflects the magnitude of the ongoing orbital traffic jam at the ISS.

If all the STS-133 work is successfully accomplished, a Soyuz will undock towards the end of the STS-133 mission and stage a station fly around to capture the ultimate ISS photo op at the biggest it will ever be.

Launch of Space Shuttle Discovery on Feb. 24 at 4:53 p.m.
from launch pad 39 A at the Kennedy Space Center. Credit: Ken Kremer

Photo Album: Discovery executes dramatic back flip or Rendezvous Pitch Maneuver (RPM) as it approaches and docks at the ISS on Feb. 26, 2011


Discovery launches on 39th and final flight to space on STS-133 mission. Credit: Ken Kremer
Discovery’s arc to orbit on Feb. 24 with first Human-Robot crew. Credit: Ken Kremer
The six person crew of Space Shuttle Discovery in their orange launch and entry flight suits
wave to large and enthusiastic crowd of space shuttle workers and media spectators before heading to the launch pad in the Astrovan for the STS-133 mission. From left are Mission Specialists Nicole Stott, Michael Barratt, Alvin Drew and Steve Bowen; Pilot Eric Boe; and Commander Steve Lindsey. Discovery will deliver the Permanent Multipurpose Module, packed with supplies and critical spare parts, as well as Robonaut 2 to the ISS. Credit: Ken Kremer