Can China enter the international space family?

China has become only the third nation in the world to have a manned space program. Photo: Chine

[/caption]

It has often been called a ‘100 billion boondoggle’ – yet it is also unquestionably one of the most successful international programs in human history. The International Space Station (ISS) is just now starting to produce some of the valuable science that was the station’s selling point from the beginning. However, this delay can be attributed to the numerous tragedies, economic woes and other issues that have arisen on a global scale through the course of the station’s construction.

The one thing that the world learned early on from the ISS experience is that space is a great forum for diplomacy. One time arch-rivals now work side by side on a daily basis.

With much of the nations of the world talking about stepped-up manned exploration efforts it would seem only natural that the successful model used on the space station be incorporated into the highly-expensive business of manned space exploration. If so, then one crucial player is being given a hard look to see if they should be included – China.

Will we one day see Chinese taikonauts working alongside U.S. astronauts and Russian cosmonauts? Only time will tell. Photo Credit: NASA

“International partnership in space exploration has proven its worth over the last decade. It would be a positive step if the other space-faring nation of the world, China, were to join the assembled space explorers of humankind as we march outward into the solar system,” said former NASA Space Shuttle Program Manager Wayne Hale who writes a popular blog about space matters.

China is only the third nation (behind Russia and the United States) to have a successful manned space program, having launched its first successful manned space flight in 2003. This first mission only had a single person onboard, and gave the world a new word – ‘taikonaut’ (taikong is the Chinese word for space). The country’s next mission contained two of these taikonauts and took place in 2005. The third and most current manned mission that China has launched was launched in 2008 and held a crew of three.

Yang Liwei became the first of China's Taikonaut when he rocketed into orbit in 2003. Photo Credit: Xinhua

China has steadily, but surely, built and tested capabilities essential for a robust manned space program. Considering that China very ambitious goals for space this would seem a prudent course of action. China has stated publically that they want to launch a space station and send their taikonauts to the moon – neither of which are small feats.

China currently utilizes its Shenzhou spacecraft atop the Long March 2F booster from their Jiuquan facility. However, if China wants to accomplish these goals, they will need a more powerful booster. This has been part of the reason that the U.S. has been hesitant to include China due to concerns about the use of what are known as dual-use technologies (rockets that can launch astronauts can also launch nuclear weapons).

Both China's rocket and spacecraft are derived from Soviet Soyuz designs. Photo Credit: Xinhua/Wang Jianmin

Some have raised concerns about the nation’s human rights track record. It should be noted however that Russia had similar issues before being included in the International Space Station program.

“In the early 1990’s, some at NASA thought having Russian cosmonauts on the Space Shuttle would mean giving away trade secrets to the competition,” said Pat Duggins, author of the book Trailblazing Mars. “It turned out Russian crew capsules saved the International Space Station when the Shuttles were grounded after the Columbia accident in 2003. So, never say never on China, I guess.”

Duggins is not the only space expert who feels that China would make a good companion when mankind once again ventures out past low-Earth-orbit.

“One of the findings of the Augustine Commission was that the international framework that came out of the ISS program is one of the most important. It should be used and expanded upon for use in international beyond-LEO human space exploration,” said Dr. Leroy Chiao a veteran of four launches and a member of the second Augustine Commission. “My personal belief is that countries like China, which is only the third nation able to launch astronauts, should be included. My hope is that the politics will align soon, to allow such collaboration, using the experience that the US has gained in working with Russia to bring it about.”

Not everyone is completely convinced that China will be as valuable an asset as the Russians have proven themselves to be however.

“It is an interesting scenario with respect to the Chinese participation in an international effort in space. The U.S. has made some tremendous strides in terms of historical efforts to bridge the gap with the Russians and the results have been superb,” said Robert Springer a two-time space shuttle veteran. “The work that has resulted in the successful completion of the International Space Station is an outstanding testimony to what can be done when political differences are set aside in the interest of International cooperation. So, there is a good model of how to proceed, driven somewhat by economic realities as well as politics. I am not convinced that the economic and political scenario bodes well for similar results with the Chinese. It is a worthwhile goal to pursue, but I am personally not convinced that a similar outcome will be the result, at least not in the current environment.”

China's journey into space has just begun, but it remains to be seen if they will be going it alone or as part of a partnership. Photo Credit: Xinhua

Fermi Telescope Catches Thunderstorms Hurling Antimatter into Space

From a NASA press release:

Scientists using NASA’s Fermi Gamma-ray Space Telescope have detected beams of antimatter produced above thunderstorms on Earth, a phenomenon never seen before.

Scientists think the antimatter particles were formed in a terrestrial gamma-ray flash (TGF), a brief burst produced inside thunderstorms and shown to be associated with lightning. It is estimated that about 500 TGFs occur daily worldwide, but most go undetected.

“These signals are the first direct evidence that thunderstorms make antimatter particle beams,” said Michael Briggs, a member of Fermi’s Gamma-ray Burst Monitor (GBM) team at the University of Alabama in Huntsville (UAH). He presented the findings Monday, during a news briefing at the American Astronomical Society meeting in Seattle.
Continue reading “Fermi Telescope Catches Thunderstorms Hurling Antimatter into Space”

Hubble Eyes Hanny’s Voorwerp

This diagram explains the formation of the strange green object known as Hanny’s Voorwerp. Astronomers believe that it is part of the long streamer of gas that extends from galaxy IC 2497, lit up brightly by the searchlight beam of a recently extinguished quasar.

[/caption]

Almost four years ago a group of astronomers known as the Galaxy Zoo made a very exciting discovery – one they named “Hanny’s Voorwerp”. Although the action occurred a hundred thousand years ago and somewhere in the neighborhood of 700 million light years away, a once upon a time quasar burned brighter than its neighboring galaxy. While the tidal pull of massive spiral IC 2497 shredded a gas rich dwarf galaxy, the incredible outpouring of ultraviolet and X-ray radiation combined with the quasar ignited the gases to light… but what exactly is it? The Hubble Space Telescope turned its eye in the direction of Leo Minor to find out…

According to the American Astronomical Society press release: “One of the strangest space objects ever seen is being scrutinized by the penetrating vision of the NASA/ESA Hubble Space Telescope. A mysterious, glowing green blob of gas is floating in space near a spiral galaxy. Hubble uncovered delicate filaments of gas and a pocket of young star clusters in the giant object, which is the size of the Milky Way. The Hubble revelations are the latest finds in an ongoing probe of Hannyrquote s Voorwerp (Hanny’s Object in Dutch). It is named after Hanny van Arkel, the Dutch schoolteacher who discovered the ghostly structure in 2007 while participating in the online Galaxy Zoo project. Galaxy Zoo enlists the public to help classify more than a million galaxies catalogued in the Sloan Digital Sky Survey. The project has expanded to include Galaxy Zoo: Hubble, in which the public is asked to assess tens of thousands of galaxies in deep imagery from the Hubble Space Telescope.” In the sharpest view yet of Hanny’s Voorwerp, Hubble’s Wide Field Camera 3 and Advanced Camera for Surveys have uncovered star birth in a region of the green object that faces the spiral galaxy IC 2497 — a bright, energetic object that is powered by a black hole.

In this image by the NASA/ESA Hubble Space Telescope, an unusual, ghostly green blob of gas appears to float near a normal-looking spiral galaxy.

This Hubble view reveals new details in colorful clarity – such as a area of star clusters whose members are only a couple of million years old… and the chemically charged yellowish-orange area at the tip of Milky Way sized Hanny’s Voorwerp. The image was made by combining data from the Advanced Camera for Surveys (ACS) and the Wide Field Camera 3 (WFC3) onboard Hubble, with data from the WIYN telescope at Kitt Peak, Arizona, USA. The ACS exposures were taken 12 April 2010; the WFC3 data, 4 April 2010.

“The star clusters are localized, confined to an area that is over a few thousand light-years wide,” explains astronomer William Keel of the University of Alabama in Tuscaloosa, leader of the Hubble study. “The region may have been churning out stars for several million years. They are so dim that they have previously been lost in the brilliant light of the surrounding gas.”

The press release goes on to state that recent X-ray observations have revealed why Hanny’s Voorwerp caught the proverbial eye of astronomers. The galaxy’s rambunctious core produced a quasar, a powerful light beacon powered by a black hole. The quasar shot a broad beam of light in Hanny’s Voorwerp’s direction, illuminating the gas cloud and making it a space oddity. Its bright green color is from glowing oxygen. “We just missed catching the quasar, because it turned off no more than 200,000 years ago, so what we’re seeing is the afterglow from the quasar,” Keel says. “This implies that it might flicker on and off, which is typical of quasars, but we’ve never seen such a dramatic change happen so rapidly.”

The quasar’s outburst also may have cast a shadow on the blob. This feature gives the illusion of a gaping hole about 20,000 light-years wide in Hanny’s Voorwerp. Hubble reveals sharp edges around the apparent opening, suggesting that an object close to the quasar may have blocked some of the light and projected a shadow on Hanny’s Voorwerp. This phenomenon is similar to a fly on a movie projector lens casting a shadow on a movie screen. (Or your little brother Tom making a duck face with his hand while your Mom isn’t looking.) Radio studies have revealed that Hanny’s Voorwerp is not just an island gas cloud floating in space awaiting a three-hour tour. The glowing blob is part of a long, twisting rope of gas, or tidal tail, about 300,000 light-years long that wraps around the galaxy. The only optically visible part of the rope is Hanny’s Voorwerp. The illuminated object is so huge that it stretches from 44,000 light-years to 136,000 light-years from the galaxy’s core. The quasar, the outflow of gas that instigated the star birth, and the long, gaseous tidal tail point to a rough life for IC 2497.

“The evidence suggests that IC 2497 may have merged with another galaxy about a billion years ago,” Keel explains. “The Hubble images show in exquisite detail that the spiral arms are twisted, so the galaxy hasn’t completely settled down.” In Keel’s scenario, the merger expelled the long streamer of gas from the galaxy and funneled gas and stars into the center, which fed the black hole. The engorged black hole then powered the quasar, which launched two cones of light. One light beam illuminated part of the tidal tail, now called Hanny’s Voorwerp.” says Keel. “About a million years ago, shock waves produced glowing gas near the galaxy’s core and blasted it outward. The glowing gas is seen only in Hubble images and spectra. The outburst may have triggered star formation in Hanny’s Voorwerp. Less than 200,000 years ago, the quasar dropped in brightness by 100 times or more, leaving an ordinary-looking core.

New images of the galaxy’s dusty core from Hubble’s Space Telescope Imaging Spectrograph show an expanding bubble of gas blown out of one side of the core, perhaps evidence of the sputtering quasar’s final gasps. The expanding ring of gas is still too small for ground-based telescopes to detect. “This quasar may have been active for a few million years, which perhaps indicates that quasars blink on and off on timescales of millions of years, not the 100 million years that theory had suggested,” Keel says. He added that the quasar could light up again if more material is dumped around the black hole.

Fascinating evidence which confirms the team’s original explanation… Go Zoo!

Credits: NASA, ESA, William Keel -University of Alabama, Tuscaloosa, the Galaxy Zoo team and STScI Press releases.

35 Days to STARDUST-NeXT Valentines Day Flyby of Comet Tempel 1

Stardust-NExT Spacecraft & Comet Tempel 1. Artist rendering of Stardust-NExT spacecraft nearing comet Tempel 1.

[/caption]

35 Days and Counting !

NASA’s re-purposed STARDUST- NeXT spacecraft is set to flyby Comet Tempel 1 at a distance of just 200 km on Valentine’s Day – February 14, 2011 at about 8:36 p.m. PST. The encounter marks the first time that a comet has been visited twice by probes from Earth. The revisit also provides the first opportunity for up-close observations of a comet both before and after a single orbital pass around the sun.

Comet Tempel 1 was first visited by NASA’s Deep Impact comet smashing mission in July 2005. Deep Impact delivered a 375 kg projectile into the path of Temple 1 that resulted in a high speed impact directly into the comet nucleus.

The cosmic collision of about 10.2 km/sec (22,800 miles/hour) ejected a cloud of debris that was studied by the Deep Impact spacecraft as well as an armada of orbiting and ground based telescopes. The impact crater itself was obscured by the debris cloud. The spacecraft did find the first evidence of surface ice on a comet instead of just inside a comet. Stardust NExT will take images and spectra of Tempel 1 and hunt for the impact crater.

Artists concept of NASA’s STARDUST- NeXT probe which will fly by Comet Tempel 1 on Feb. 14, 2011. Credit: NASA

According to the latest update posted at the STARDUST- NeXT mission website on Jan 6; “The spacecraft is healthy and began the New Year with a cold boot to clear a memory address latch-up that had occurred late in 2010. This cold boot clears the latched line and resets the memory to its factory settings.”

The reboot was completely successful and sets the probe up to accomplish the missions science objectives. On board optical navigation cameras were scheduled to take a new set of images on Jan. 6.

The update further states that the mission plan has now changed substantially to accommodate two new challenges. First the estimated fuel remaining on board is lower than expected. Second, the optical navigation cameras failed to detect the comet in the prior set of images in December.

10 Jan. 2011 Position of STARDUST-NeXT probe - Looking Down on the Sun. This image shows the current position of the STARDUST spacecraft and the spacecraft's trajectory (in blue) around the Sun. Credit: NASA

The optical cameras provide the key information to precisely navigate the probe to the comet. “Current estimates show that the comet may not be bright enough to detect with the Navcam until the latter half of January,” states the update.

As a result of the lower fuel estimate the remaining trajectory maneuvers (TCM’s) have been adjusted to January 31, February 7, and February 12. No science images will be taken until the last 7 days prior to the Feb 14 encounter.

Caption: Video of Comet Tempel 1 as NASA’s Deep Impact comet spacecraft delivers a projectile which smashed into the comet in July 2005. NASA’s STARDUST- NeXT probe is set to flyby Comet Tempel 1 on February, 14, 2011. The probe will collect numerous high resolution images of the coma and nucleus and hunt for the elusive 2005 impact crater.

The team states that these changes will provide “positive fuel margin through encounter …. and places the TCMs at times best able to accommodate late detection of the comet”.

The engineering team is building new approach sequences to accommodate these significant changes to the approach and Comet Tempel 1 encounter on Feb 14.

A briefing by the science team will be carried live on NASA TV on Jan. 19 at 2 PM EST

The Stardust spacecraft accomplished its original goal of flying through a dust cloud surrounding the nucleus of comet Wild 2 in Jan. 2004. The probe successfully gathered particles of cometary material during the flyby, The comet particles were returned to Earth aboard a sample return capsule which landed in the Utah desert in January 2006.

Comet particle tracks in aerogel returned to Earth by STARDUST in January 2006

Hide And Go Seek…. Supermassive Black Hole Peeks From Behind The Skirt Of A Dwarf Galaxy

Composite image of the dwarf galaxy Henize 2-10. Hubble Space Telescope data is colored red, green and blue, Very Large Array data is yellow and the Chandra X-Ray Observatory data is purple. Cross marks presumed location of the supermassive black hole in the galaxy.

[/caption]

It’s a bird… It’s a plane… It’s a million times more massive than our Sun! Just how big do you have to be to hide something really big? Well, in the case of a supermassive black hole all you have to be is a small galaxy.

According to the American Astronomical Society Press Release the surprising discovery of a supermassive black hole in a small nearby galaxy has given astronomers a tantalizing look at how black holes and galaxies may have grown in the early history of the Universe. Finding a black hole a million times more massive than the Sun in a star-forming dwarf galaxy isn’t exactly child’s play – but it is a strong indication that supermassive black holes formed before the buildup of galaxies.

So what’s its name? The big little galaxy is called Henize 2-10. Located 30 million light-years from Earth, it’s not unknown to astonomers and is noted for rapid star formation. This irregular player is roughly 3% the size of the Milky Way and scientists think it may greatly resemble some of the first galaxies for form in the early Universe. “This galaxy gives us important clues about a very early phase of galaxy evolution that has not been observed before,” said Amy Reines, a Ph.D. candidate at the University of Virginia.

We’ve been aware for some time that supermassive black holes are present in the cores of all “full-sized” galaxies – however, we’re a bit more used to balancing the scale. In the nearby Universe, there is a direct relationship — a constant ratio — between the masses of the black holes and that of the central “bulges” of the galaxies, leading them to conclude that the black holes and bulges affected each others’ growth.

Two years ago, an international team of astronomers found that black holes in young galaxies in the early Universe were more massive than this ratio would indicate…

The dwarf galaxy Henize 2-10, seen in visible light by the Hubble Space Telescope. The central, light-pink region shows an area of radio emission, seen with the Very Large Array. This area indicates the presence of a supermassive black hole drawing in material from its surroundings.

“Now, we have found a dwarf galaxy with no bulge at all, yet it has a supermassive black hole. This greatly strengthens the case for the black holes developing first, before the galaxy’s bulge is formed,” Reines said. She, along with Gregory Sivakoff and Kelsey Johnson of the University of Virginia and the National Radio Astronomy Observatory (NRAO), and Crystal Brogan of the NRAO, observed Henize 2-10 with the National Science Foundation’s Very Large Array radio telescope and with the inquisitive eye of the Hubble Space Telescope. What did they find hiding behind the neighbor’s hedges? How about a region near the center of the galaxy that strongly emits radio waves with characteristics of those emitted by super-fast “jets” of material spewed outward from areas close to a black hole. A concept we’ve come quite familiar with in recent years!

Next up, they then searched images from the Chandra X-Ray Observatory that showed this same, radio-bright region to be strongly emitting energetic X-rays. This combination, they said, indicates an active, black-hole-powered, galactic nucleus. “Not many dwarf galaxies are known to have massive black holes,” Sivakoff said.

Of course, there are central black holes of roughly the same mass as the one in Henize 2-10 have been found in other galaxies, those galaxies all have much more regular shapes – the “normal” kids of the hood. Henize 2-10 differs not only in its irregular shape and small size but also in its furious star formation, concentrated in numerous, very dense super star clusters. “This galaxy probably resembles those in the very young Universe, when galaxies were just starting to form and were colliding frequently. All its properties, including the supermassive black hole, are giving us important new clues about how these black holes and galaxies formed at that time,” Johnson said.

Kids… Gotta’ love ’em!

CREDIT: Reines, et al., David Nidever, NRAO/AUI/NSF, NASA

Astronomy Without A Telescope – Why Water?

Mono Lake in California - not really a site of alien biochemistry, but nicely photogenic all the same.

[/caption]

The assumption that alien biochemistries probably require liquid water may seem a little Earth-centric. But given the chemical possibilities available from the most abundant elements in the universe, even an alien scientist with a different biochemistry would probably agree that a water-solvent-based biochemistry is more than likely to occur elsewhere in the universe – and would be the most likely foundation for intelligent life to develop.

Based on what we know of life and biochemistry, it seems likely that an alien biochemistry will need a solvent (like water) and one or more elemental units for its structure and function (like carbon). Solvents are important to enable chemical reactions, as well as physically transporting materials – and in both contexts, having that solvent in its liquid phase seems vital.

We might expect that common biochemically useful solvents are most likely to form from the most common elements in the universe – being hydrogen, helium, oxygen, neon, nitrogen, carbon, silicon, magnesium, iron and sulfur, in that order.

You can probably forget about helium and neon – both noble gases, they are largely chemically inert and only rarely form chemical compounds, none of which obviously have the properties of a solvent. Looking at what’s left, the polar solvents that might be most readily available to support a biochemistry are firstly water (H2O), then ammonia (NH3) and hydrogen sulfide (H2S). Various non-polar solvents can also be formed, notably methane (CH4). Broadly speaking, polar solvents have a weak electric charge and can dissolve most things that are water-soluble, while non-polar solvents have no charge and act more like the industrial solvents we are familiar with on Earth, such as turpentine.

Isaac Asimov, who when not writing science fiction was a biochemist, proposed a hypothetical biochemistry where poly-lipids (essentially chains of fat molecules) could substitute for proteins in a methane (or other non-polar) solvent. Such a biochemistry might work on Saturn’s moon, Titan.

Nonetheless, from the list of potentially abundant solvents in the universe, water looks to be the best candidate to support a complex ecosystem. After all, it is likely to be the most universally abundant solvent anyway – and its liquid phase occurs at a higher temperature range than any of the others.

It seems reasonable to assume that a biochemistry will be more dynamic in a warmer environment with more energy available to drive biochemical reactions. Such a dynamic environment should mean that organisms can grow and reproduce (and hence evolve) that much faster.

Water also has the advantages of:
• having strong hydrogen bonds that gives it a strong surface tension (three times that of liquid ammonia) – which would encourage the aggregation of prebiotic compounds and the development of membranes;
• being able to form weak non-covalent bonds with other compounds – which, for example, supports the 3d structure of proteins in Earth biochemistry; and
• being able to engage in electron transport reactions (the key method of energy production in Earth biochemistry), by donating a hydrogen ion and its corresponding electron.

Water's polar nature - and acting as a solvent. Credit: Addison-Wesley.

Hydrogen fluoride (HF) has been suggested as an alternative stable solvent that could also engage in electron transport reactions – with a liquid phase between -80 oC and 20 oC at 1 atmosphere pressure (Earth, sea-level). This is a warmer temperature range than the other solvents that are likely to be universally abundant, apart from water. However fluorine itself is not a very abundant element and HF, in the presence of water, will turn into hydrofluoric acid.

H2S can also be used for electron transport reactions – and is so used by some Earth-based chemosynthetic bacteria – but as a fluid it only exists in the relatively narrow and cold temperature range of -90 oC to -60 oC at 1 atmosphere.

These points at least make a strong case for liquid water being the most statistically likely basis for the development of complex ecosystems capable of supporting intelligent life. Although other biochemistries based on other solvents are possible – they seem likely to be limited to cold, low energy environments where the rate of development of biological diversity and evolution may be very slow.

The only exception to this rule might be high pressure environments which can sustain those other solvents in fluid phase at higher temperatures (where they would otherwise exist as a gas at a pressure of 1 atmosphere).

Next week: Why Carbon?

Further Reading:
Meadows et al The Search for Habitable Environments and Life in the Universe.
Wikipedia Hypothetical Types of Biochemistry.

Rep. Giffords, Wife of NASA Astronaut, Shot

Gabrielle Giffords and Mark Kelly, in an image on Giffords' campaign website.

[/caption]

Rep. Gabrielle Giffords of Arizona was shot in the head Saturday when an assailant opened fire outside a grocery store during a meeting with constituents, killing at least five people and wounding several others. Giffords is the wife of NASA astronaut Mark Kelly who is scheduled to command one of the last space shuttle missions. Giffords is reportedly in stable condition. Those killed included a 9-year-old child and a federal judge.

Kelly is scheduled to command the shuttle Endeavour in April, but he immediately flew on a NASA jet to Tucson from Houston, officials said, and asked to be put on personal leave. His twin brother Scott is now on board the International Space Station as commander. NASA officials said Scott Kelly was informed of the shooting by flight controllers at the Johnson Space Center.

Reports say the gunman shot Giffords from about a foot away, and then opened fire on the rest of the crowd. The gunman was subdued by other members of the crowd and is now in custody.

The surgeon who attended Giffords said the bullet traveled all the way through her head, but he is optimistic about her recovery.

NASA Administrator Charlie Bolden issued a statement on the tragedy:

“We at NASA are deeply shocked and saddened by the senseless shooting of Representative Giffords and others at Saturday’s public event in Tucson. As a long-time supporter of NASA, Representative Giffords not only has made lasting contributions to our country, but is a strong advocate for the nation’s space program and a member of the NASA family. She also is a personal friend with whom I have had the great honor of working. We at NASA mourn this tragedy and our thoughts and prayers go out to Congresswoman Giffords, her husband Mark Kelly, their family, and the families and friends of all who perished or were injured in this terrible tragedy.”

Sources: AP, Twitter

Private Space Company Obtains Old Russian Space Station Modules

An Almaz space station module being transported on the Isle of Man. (Credit: Excalibur Almaz)

[/caption]

The private spaceflight company Excalibur Almaz has obtained two partially completed Almaz space station modules from Russia and brought them to the company’s home base on the Isle of Man. The modules and Excalibur Almaz’ reusable return vehicles were developed by a Russian company in the 1970’s but were never flown. Excalibur Almaz hopes to offer week-long orbital space flights beginning as early as 2013, using the once top-secret Russian capsules and modules.

In 2009, EA reached an agreement JSC MIC NPO Mashinostroyenia (NPOM) of Russia, the company that originally built the spacecraft, and purchased both the Reusable Return Vehicles rockets and modules for the Almaz space station. In the 1970’s, the RRVs went through nine flight tests, with two RRVs flown to orbit several times.

EA will work on updating the spacecraft to conduct crew and cargo space missions for private individuals, corporations, academic institutions and national governments.

In a press release, EA said the stations will be initially stored, followed by research, testing and possibly completion and launch to orbit.

“EA’s initial flights to orbit will be in the flight tested Excalibur Almaz Reusable Return Vehicles joined to and supported by service module living and working habitats,” EA said. “The space stations themselves are part of EA’s long-term business plan. It is not economically feasible to launch and sustain them on orbit until the company’s flight rate reaches six or more flights per year.”

EA Founder and CEO Art Dula said, “This is another significant landmark towards achieving our stated goals with continuing technical support from leading

The Almaz space stations are approximately 11 meters long and four meters in diameter; and are directly related to the module design used on the International Space Station as well as the earlier Russian Salyut and Mir space stations. Other unique features of the Almaz stations include the largest window ever developed for a spacecraft, boasting over two meters of panoramic view of the Earth and stars.

Source: Excalibur Almaz

NASA Redoubling Efforts to Contact Spirit

Spirit’s Last Picture Show - for now. Spirit’s final panoramic mosaic was taken on Sol 2175 in February 2010, a few weeks before entering hibernation mode in March 2010 just prior to the onset of her 4th winter on Mars. The Columbia Hills serve as a backdrop in this image. The rover is stalled in a sand trap called Troy adjacent to the Home Plate volcanic feature in Gusev Crater. Von Braun mound, left of center, was next driving target for science until Spirit became mired in sulfate rich soil - which indicates significant past flow of liquid water in this region of Mars. Credit: NASA/JPL/Cornell, Marco Di Lorenzo, Kenneth Kremer

[/caption]

No one is giving up hope for Spirit. Not Yet. And neither should you.

It’s too soon to turn out the lights. Indeed NASA is stepping up operational efforts to contact the plucky rover – More communications commands; more listening time; more frequencies. Spirit last communicated with mission controllers back on Earth on March 22, 2010. The rover entered hibernation mode – some nine months ago – as the available sunlight to power the life giving solar panels was diminishing. NASA hopes to reawaken Spirit from a long slumber and reignite her breakthrough campaign of exploration and discovery from a scientific goldmine on the surface of the red planet.

“The sun is still rising on Mars,” says Ray Arvidson in an interview from Washington University in St. Louis. Arvidson is the deputy principal investigator for the Spirit and Opportunity rovers.

“We will keep listening for many months if necessary,” Steve Squyres informed me. Squyres is the Principal Scientific Investigator for the Mars Exploration Rover mission.

Carbonate-Containing Martian Rocks, False Color.
Data from Spirit collected in late 2005 has confirmed that an outcrop called Comanche contains a mineral indicating that a past environment was wet and non-acidic, possibly favorable to life.
Spirit captured this view of the Comanche outcrop during Sol 689 on Mars (Dec. 11, 2005). The rover's Mössbauer spectrometer, miniature thermal emission spectrometer and alpha particle X-ray spectrometer each examined targets on Comanche.
About one-fourth of the composition of Comanche is magnesium iron carbonate. That concentration is 10 times higher than for any previously identified carbonate in a Martian rock. Carbonates originate in wet, near-neutral conditions, but dissolve in acid. The find at Comanche is the first unambiguous evidence from either Spirit or Opportunity for a past Martian environment that may have been more favorable to life than the wet but acidic conditions indicated by the rovers' earlier finds. Credit: NASA/JPL-Caltech/Cornell University

By the time of the last dispatch from Mars, Spirit had lasted for nearly six years of bonus mission time – during the extended mission phase – light years beyond the 3 month “warranty” proclaimed by NASA as the mission began back in January 2004.

At Spirit’s location in the southern hemisphere of Mars, Southern Summer has not yet arrived. Right now it’s mid Southern Spring and daylight hours are increasing. And Summer doesn’t even start until mid-March 2011. The question is whether Spirit’s unheated electronics components have endured the extremely harsh and frigidly cold conditions of her 4th winter on Mars – her coldest ever. At about -100 C … Imagine Antarctica !

“The amount of solar energy available for Spirit is still increasing every day for the next few months,” said Mars Exploration Rover Project Manager John Callas of NASA’s Jet Propulsion Laboratory (JPL) , Pasadena, Calif. “As long as that’s the case, we will do all we can to increase the chances of hearing from the rover again.”

“We’re stepping up our efforts to contact Spirit — doubling down on her, as it were,” tweeted JPL mars rover driver Scott Maxwell.

And all those negative stories you may have read about Spirit being “Still Stuck” … well they totally missed the point.

A topographical map showing where Spirit became mired in loose, sulfate rich soil at a depression called Scamander Crater, about 8 meters (26 feet) wide and 25 centimeters (10 inches) deep. The total relief indicated by the color differences is about half a meter (20 inches) from the higher ground (color coded red) to the lower ground (color coded black). The map covers an area 12 meters (39 feet) wide from west to east. North is to the top.From its embedded position, the rover used its robotic arm to examine the patch of bright soil it had exposed, called Ulysses. The map indicates that Spirit is situated with its left wheels within the crater and right wheels outside the crater. Credit: NASA/JPL-Caltech/Ohio State University

In the final Sols, or Martian days, before falling silent in March 2010, there was dramatic movement by Spirit. “During the last 9 drives, Spirit actually moved 34 cm. That’s pretty good for a stationary rover,” Arvidson said.

This movement came despite the loss of two of the rover’s six wheels and after many months of methodical testing in the “Mars sand box”. Engineers at JPL devised and tested numerous strategies in attempting to extricate Spirit from the sand trap of soft soil in which she became mired.

Because of the declining sun and available power, Spirit basically just ran out of time to try and completely escape from the sand trap. This left it unable to obtain a favorable tilt for solar energy during the rover’s fourth Martian winter, which began last May.

Many members of the rover team are hopeful that they can indeed “Free Spirit” if she awakens from her current hibernation mode.

“I have no idea whether we’ll hear from Spirit again or not… there’s simply no way to predict it,” Squyres told me. “We will keep listening for many months. All we can do is listen”

Even if we never hear from Spirit again, she has accomplished a remarkable series of scientific breakthroughs, far beyond the wildest dreams of the science and engineering teams that built and operate the twins.

Both rovers have made important discoveries about wet environments on ancient Mars that may have been favorable for supporting microbial life.

Spirit discovered a rock that contained high levels of carbonates, minerals that form in neutral watery conditions that are far more conducive to the formation of life than the acidic watery conditions reported earlier in the mission.

Although Spirit has been stalled at a place called ‘Troy’ since April 2009. she made a significant science discovery at that exact spot. Spirit examined the soil in great detail and found key evidence that water, perhaps as snow melt, trickled into the subsurface fairly recently and on a continuing basis.

While driving on the western edge of an eroded over volcanic feature named ‘Home Plate’, she unknowingly broke through a hard surface crust (perhaps 1 cm thick) and sank into hidden soft sand beneath. At ‘Troy’, Spirit discovered that the crust was comprised of water related sulfate materials and therefore found evidence for the past flow of liquid water on the surface of Mars – a great science discovery!

After mid-March, prospects for reviving Spirit would begin to drop, say NASA officials. Communication strategies would change based on reasoning that Spirit’s silence is due to factors beyond just a low-power condition. Mission-ending damage from the cold experienced by Spirit in the past Martian winter is a real possibility.

This mosaic of images shows the soil in front of NASA's Mars Exploration Rover Spirit after a series of short backward drives during attempts to extricate the rover from a sand trap in January and early February 2010. It is presented in false color to make some differences between materials easier to see. Bright-toned soil was freshly exposed by the rover's left-front wheel during the drives and can be seen with a sand wave shaping that resulted from the unseen wheel's action.

Spirit's panoramic camera (Pancam) took the component images during the period from the 2,163rd to 2,177th Martian days, or sols, of Spirit's mission on Mars (Feb. 2 to Feb. 16, 2010). The turret at the end of the rover's arm appears in two places because of movement during that period. Insets in the upper left and lower right corners of the frame show magnified views of the nearby inscribed rectangles within the mosaic. The patch of ground within each rectangle is about 25 centimeters (10 inches) across. The top inset and upper portion of the mosaic include targets within soil layers exposed by the action of Spirit's wheels in April 2009 and examined in detail with instruments on Spirit's arm during the five subsequent months.

Olive pit and Olive leaf are two of the analyzed targets. The investigations determined that, under a thin covering of windblown sand and dust, relatively insoluble minerals are concentrated near the surface and more-soluble ferric sulfates have higher concentrations below that layer. This pattern suggests water has moved downward through the soil, dissolving and carrying the ferric sulfates. The brightness and color of the freshly disturbed soil seen in the center area of the mosaic indicates the this formerly hidden material is sulfate-rich. Before Spirit drove into this patch, the surface looked like the undisturbed ground highlighted in the lower-right inset. Flecks of red material in the surface layer resemble the appearance of the surface layer at other locations where Spirit's wheels have exposed high-sulfate, bright soils. Image Credit: NASA/JPL-Caltech/Cornell University


Spirit entered a low-power fault mode in March 2010 with minimal activity except charging and heating the batteries and keeping its clock running. With most heaters shut off, Spirit’s internal temperatures dipped lower than ever before on Mars. That stress could have caused damage, such as impaired electrical connections, that would prevent reawakening or, even if Spirit returns to operation, would reduce its capabilities.

“Components within the rover electronic module (REM) inside the rover’s warm electronic box (WEB) are experiencing record low temperatures,” said Doug McCuistion, the director of Mars Exploration at NASA Headquarters in Washington, DC, in an interview about Spirit’s predicament. “The expectation is for the REM hardware to reach -55C at the coldest part of the winter. We have tested the REM down to -55C”.

NASA’s Deep Space Network of antennas in California, Spain and Australia has been listening for Spirit daily in coordination with the spacecraft orbiting Mars; Mars Odyssey and Mars Reconnaissance Orbiter. In X-band, the DSN listens for Spirit during one pass each day. The rover team has also been sending commands to elicit a response from the rover even if the rover has lost track of time.

Now, the monitoring is being increased. Additional listening periods include times when Spirit might mistake a signal from NASA’s Mars Reconnaissance Orbiter as a signal from Earth and respond to such a signal. Commands for a beep from Spirit will be sent at additional times to cover a wider range of times-of-day on Mars when Spirit might awaken.

“DSN does an average of 4 “sweep & beep” commands in each day’s pass,” according to JPL spokesman Guy Webster. Also, NASA is listening on a wider range of frequencies to cover more possibilities of temperature effects on Spirit’s radio systems

Opportunity is still blazing a trail of discovery on the opposite side of Mars. She is currently exploring the stadium sized Santa Maria Carter which holds deposits of water bearing minerals that will further elucidate the potential habitability on the red planet.

For current updates about Opportunity’s exciting view from the steep walled crater and while being simultaneously imaged from Mars orbit in exquisite high resolution, read my earlier stories.

Crab Nebula Flares

A composite illustration of the AGILE satellite and the Crab Nebula imaged by the Chandra observatory. [Image courtesy of ASI, INAF and NASA]
A composite illustration of the AGILE satellite and the Crab Nebula imaged by the Chandra observatory. [Image courtesy of ASI, INAF and NASA]

[/caption]

The Crab Nebula is one of the most popular targets for astronomers of all stripes. It is readily viewable in moderate sized amateur telescopes and wows new viewers at star parties when they’re informed they’re looking at the remnant of a supernova that exploded in 1054 AD. The nebula is also a popular target for professional astronomers looking to study physics in the environment of a pulsar. Powered by synchrotron radiation from the pulsar, the nebula glows brightly across numerous wavelengths in a steady manner that is so consistent, that astronomers have used it to calibrate instruments in different portions of the spectrum. The largest regular variation discovered was a mere 3.5% in the X-ray portion of the spectrum.

But on September 22 of 2010, the Italian Space Agency’s AGILE satellite observed a sudden brightening in the nebula in the gamma ray portion of the spectrum. The Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope, which observes the Crab regularly, confirmed this flaring. Strangely, telescopes observing the nebula in other spectral regimes showed no brightening at all. The lone exception was a small knot roughly one arcsecond in diameter seen by the Chandra X-ray telescope which is believed to correspond to the base of a jet emanating from the pulsar.

Many telescopes observed the central pulsar in X-rays as well as radio to attempt to discover if there had been a sudden change in the power source itself that caused the sudden brightening, but no changes were apparent. This suggests that the flare didn’t come directly from the pulsar, but rather from the nebula itself, perhaps as an interaction between the jet and the magnetic field of the nebula causing intense synchrotron radiation. If this is the cause, then the energy of the accelerated electrons is among the highest of any astronomical event. Such a case is of interest to astronomers and physicists because it provides a rare test bed into relativistic physics and particle acceleration theory.

While this event was certainly noteworthy, it was not entirely unique. AGILE detected a previous flare on October 7, 2007 and Fermi’s LAT had discovered another in February 2009. Currently, none of these events have been entirely explained but will likely give astronomers a target for future studies. Based on the amount of coverage the Crab Nebula receives from telescopes, astronomers are no expecting that such flares are a relatively common occurrence, happening about once a year. If so, this will provide an excellent opportunity to study such events with more scrutiny.