What Hanny’s Voorwerp Reveals About Quasar Deaths

The green "blob" is Hanny's Voorwerp. Credit: Dan Herbert, Peter Smith, Matt Jarvis, Galaxy Zoo Team, Isaac Newton Telescope

[/caption]

Hanny’s Voorwerp is a popular topic of conversation due to its novel discovery by Hanny Van Arkel perusing images from the Galaxy Zoo project. The tale has become so well known, it was made into a comic book (view here as .pdf, 35MB). But another aspect of the story is how enigmatic the object is. Objects that are so green are rare and it lacked a direct power source to energize it. It was eventually realized a quasar in the neighboring galaxy, IC 2497 could supply the necessary energy. Yet images of the galaxy couldn’t confirm a sufficiently energetic quasar. A new paper discusses what may have happened to the source.


The evidence that a quasar must be involved comes from the green color of the voorwerp itself. Spectra of the object has shown that this coloration is due to a strong level of ionized oxygen, specifically the λ5007 line of O III. While other scenarios could account for this feature alone, the spectra also contained He II emission as well as Ne V and the lines were especially narrow. Should star formation or shockwaves energize the gas, the motions would cause Doppler broadening. An quasar powered Active Galactic Nucleus (AGN) was the best fit.

But when telescopes searched for this quasar in the galaxy, it proved elusive. Optical images from WIYN Observatory were unable to resolve the expected point source. Radio observations discovered an object emitting in this range, but far below the amount of energy necessary to power the luminous Voorwerp. Two solutions have been proposed:

“1) the quasar in IC 2497 features a novel geometry of obscuring material and is obscured at an unprecedented level only along our line of sight, while being virtually unobscured towards the Voorwerp; or 2) the quasar in IC 2497 has shut down within the last 70,000 years, while the Voorwerp remains lit up due to the light travel time from the nucleus.”

Recent observations from Suzaku have ruled out the first of these possibilities due to the lack of potassium absorption that would be expected if light from the galaxy were being absorbed in a significant amount. Thus, the conclusion is that the AGN has dropped in total output by at least two orders of magnitude, but more likely by four. In many ways, this is not entirely unexpected since quasars are plentiful in the distant universe where raw material on which to feed was more plentiful. In the present universe, quasars rarely have such material available and can’t maintain it indefinitely.

Analogs exist within our own galaxy. X-Ray Binaries (XRBs) are stellar mass black holes which form similar accretion disks and can shut down and excite on short timescales (~1 year). The authors of the new paper attempted to scale up a model XRB system to determine if the timescales would fit with the ~70,000 year upper limit imposed by the travel time. While they found a good agreement with the output from direct accretion itself (10,000–100,000 years) the team found a discrepancy in the disk. In XRBs, the material around the black hole is heated as well, and takes some time to cool down. In this case, the core of the galaxy should still retain a hot disc of material which isn’t present.

This oddity demonstrates that there is still a large amount of knowledge to be gained on the physics surrounding these objects. Fortunately, the relatively close proximity of IC 2497 allows for the potential for detailed followup studies.

Best of Earth from the ISS

Fire scars in Australia are featured in this image photographed by an Expedition 5 crewmember on the International Space Station (ISS). Bright orange fire scars show up the underlying dune sand in the Simpson Desert, Credit: NASA

The International Space Station has been orbiting the Earth every day for over 10 years, and the astronauts all say their favorite pastime is looking at the Earth. During the past 10 years, the crews have taken some great pictures of our planet, and these images provide a unique look at our world. These are just a few of the spectacular views of Earth from the space station.

Continue reading “Best of Earth from the ISS”

Ten Years Of the ISS in Pictures

Dextre, a large robotic manipulator to help with outside maintenence of the ISS was added in October of 2007. Credit: NASA

[/caption]

Ten years ago, the first Expedition crew arrived at the International Space Station. Here’s a look back in time at how the station has changed and grown, and some of the people who were there to make it happen.

And if you’re really feeling the love for the ISS today, check out our 2008 article, “I Heart the ISS; Ten Reasons to Love the International Space Station.”


The configuration of the ISS when the first expedition crew arrived on Nov. 2, 2000. Credit: NASA

Expedition Two crewmembers Yury Usachev (left), mission commander, Jim Voss, flight engineer, and Susan Helms, flight engineer, share a dessert in the Zvezda Service Module. Credit: NASA
This image was taken on April 21, 2001 during Expedition 2; the first large solar arrays were added during the STS-100 space shuttle mission. Credit: NASA
The Expedition Five crewmembers in the Destiny laboratory on the ISS. From the left are cosmonaut Valery Korzun, mission commander; astronaut Peggy A. Whitson, who became the ISS’s first science officer, and cosmonaut Sergei Treschev. Credit: NASA
The Microgravity Science Glovebox was added to the Destiny lab on the ISS during Expedition 5. Credit: NASA
The Expedition Six crew pose for a crew photo in the Zarya module on the ISS; Don Pettit (front), science officer; cosmonaut Nikolai Budarin (left back), flight engineer; and astronaut Ken Bowersox, mission commander. Credit: NASA
During Expedition 6, the space shuttle Columbia accident occurred, and the shuttle program was on hold. ISS astronauts Don Pettit (left) and Ken Bowersox had to do a variety of maintenance tasks outside the ISS that normally visiting shuttle crews would have taken care. Credit: NASA.
It was rather lonely times for awhile on the ISS -- with no space shuttles flying, only two crewmembers were able to be on board the ISS. Here are Expedition 7's Yuri Malenchenko and Ed Lu. Credit: NASA
The Russian Soyuz vehicle serves as transportation and rescue vehicle for the ISS. Credit: NASA
New Crew member? No, this is the European Matroshka-R Phantom experiment, which operated during Expedition 12 in the Zvezda Service Module of the International Space Station. Matroshka, the name for the traditional Russian set of nestling dolls, is an antroph-amorphous model of a human torso designed for radiation studies. Credit: NASA
Stuff happens it space. During a spacewalk, Expedition 16 commander Fyodor Yurchikhin noticed damage to a multi-layer insulation (MLI) protective blanket on the Zarya module. The damage, he noted, was apparently from a micrometeoroid impact. The date the damage occurred is unknown but has had no impact to vehicle operations. Credit: NASA
Shuttles returned to flight in July of 2005, and this is how the ISS looked when space shuttle Discovery visited, the first shuttle visit in over 2 years. Credit: NASA
The ISS as it looked in June of 2007, during the STS-117 mission. Credit: NASA
The backbone of the ISS is the huge truss, brought up to the ISS in smaller segments, which are still huge by themselves. Dave Williams, STS-118 mission specialist from Canada works outside the ISS, helping to attach the Starboard 5 (S5) segment, and works on the forward heat-rejecting radiator from the station's Port 6 (P6) truss. Credit: NASA
A look inside the Harmony node that was brought to the ISS in on the STS-120 mission in 2007. Credit: NAS
Sunita Williams, Expedition 15 flight engineer, works on a science experiment in April of 2007. Credit: NASA
Backdropped by the thin line of Earth's atmosphere and the blackness of space, a portion of the International Space Station is featured in this image photographed by an Expedition 20 crew member aboard the station. in May 2009. Credit: NASA
A torn solar array panel in the ISS, which was installed during the STS-120 mission. See below for the repair job. Credit: NASA
The repaired solar array, fixed by STS-120 astronauts. Credit: NASA
European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, works on the new Columbus laboratory that was installed in February 2008. Credit: NASA
Astronauts work on adding the Japanese logistics module-pressurized section in March of 2008 during the STS-123 mission. Credit: NASA
Dextre, a large robotic manipulator to help with outside maintenence of the ISS was added in October of 2007. Credit: NASA
A motley-looking crew of the Expedition 17 and 18 crewmembers in the Harmony node in Oct. 2008. Credit: NASA
Here's how the ISS looked durng the STS-128 mission in September of 2009. Credit: NASA
During the STS-130 mission in Feb. 2010, the Cupola and Tranquility Node were added. The Cupola provides unprecidented views of Earth and space from the ISS. Credit: NASA
How the ISS looked during the STS-130 mission in February 2010. Credit: NASA
The Russian Mini Research Module was added in May of 2010 on STS-132. Credit: NASA
NASA astronauts Shannon Walker (left), Expedition 24/25 flight engineer; Tracy Caldwell Dyson, Expedition 23/24 flight engineer; and Doug Wheelock, Expedition 24 flight engineer and Expedition 25 commander, pose for photo in the Poisk Mini-Research Module 2 (MRM2) of the International Space Station.
How the ISS looks today (as of this writing), and as it looked following the STS-132 mission in May of 2010. Credit: NASA

For a complete list of pictures of each of the ISS Expedition crews, see NASA’s gallery which shows all those who have served on the space station over the past 10 years.

10 Years of the ISS: First Commander Reflects on Anniversary

Ten years ago today US astronaut Bill Shepherd and Russian cosmonauts Sergei Krikalev and Yuri Gidzenko arrived at the fledgling International Space Station, after launching in a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan on October 31, 2000. This began a decade of continuous human habituation on board the station. The station’s first commander reflects on his mission and the past 10 years.

Astrophotos: Halo Around the Sun in South Africa Today

A halo appeared around the Sun on Nov. 1, 2010 in Centurion South Africa. Credit: Alan Buff.

[/caption]

Residents around Johannesburg, South Africa were treated with a rare astronomical (or actually atmospheric) sight — a halo around the Sun. These halos are striking to see, but unlike an eclipse, they can’t be predicted. Conditions in the atmosphere have to be just right, with moisture or ice crystals creating a “rainbow” effect around the Sun. Sometimes the halos surround the Sun completely, other times, they appear as arcs around the solar sphere. Basically, sunlight is reflecting off moisture in the atmosphere. These images were sent in by Alan Buff from Centurion, South Africa. See more below.

Another image of a halo that appeared around the Sun on Nov. 1, 2010 in Centurion South Africa; this one has a building blocking out the Sun itself. Credit: Alan Buff.

In folklore, these halos seen around the Sun or the Moon means precipitation is on the way, which makes sense, since moisture in the atmosphere usually makes it down to the ground. High clouds of ice crystals are called cirrus clouds, and these often form in at the leading edge of warm fronts that bring rain.

Newspaper and internet articles report that Johannesburg was buzzing about the weird halos; however, the explanation was simple and did not include aliens or end-of-the-world scenarios.

A halo appeared around the Sun on Nov. 1, 2010 in Centurion South Africa. Credit: Alan Buff.

Thanks again to Alan Buff for sharing his images with Universe Today.

Sources: eHow, NewsTime, NASA

Stunning Timelapse Video of Earth and Sky

The Bad Astronomer posted a time-lapse video today which is wonderful, and you should go watch it, but I’m going to counter with another incredible time-lapse that might be even better (in my opinion! — and as suggested by Daniel Fischer on Twitter). This one was created by photographer Dustin Farrell, and shows a year’s compilation of his time lapse work. “All shot on the Canon 5D2 and processed in Adobe After Effects,” Farrell writes on his Vimeo page. “The majority of the shots are in my beautiful home state of Arizona. Goblin Valley State Park and Natural Bridges National Monument in Utah also make an appearance,” — as do NASA’s new electric rovers. Check out Farrell’s company’s website, CrewWest, Inc.

Just amazing.

Can’t Get to Kennedy Space Center? See Launchpad Up Close in Gigapan

Screenshot from the Gigapan image of space shuttle Discovery on the launchpad.

[/caption]

From experience, I can tell you being at one of the launchpads at Kennedy Space Center is awesome beyond words. Not many people, though, get to see a shuttle on the launchpad up close and personal, and with just a couple launches left, many are at least are hoping to get a view of the launch. But if you aren’t able to travel to Florida and see a shuttle on the pad, you can take advantage of a few different websites that can take you there virtually, and probably bring you closer than you could ever get in person.

The first website is Gigapan, where NASA photographer Bill Ingalls has put together all the high resolution images he took on Sunday, Oct. 31, 2010 at Kennedy Space Center, and created one huge images that you can pan around and see everything up close. Go to the Gigapan website, and by moving your mouse around or by clicking on the images below the big image, you will be transported up close and personal with various locations within the image.

The Gigapan technology was originally developed for the Mars Exploration Rovers, and the panoramas created from Mars enabled a simulated experience of being on another planet. The Gigapan project aims to create a similar experience, but for exploration of Earth.

The second website is John O’Connor’s NASA Tech website. I met John when I was at Kennedy Space Center earlier this year, was able to watch him take the images for the extremely high resolution virtual tours he creates. The interactive 360 degree images he creates are nothing short of stunning — but they are also very bandwidth intensive — so be prepared, and watch out if you don’t have high speed internet or have a lot of browsers or windows open on your computer. Right now on his website you can see different views of the launchpad with Discovery sitting on top, and also go inside the space station processing facility and see Robonaut 2 before he was stowed for launch on STS-133, and much more.

Here’s an image I took of John setting up his equipment when we were at Launchpad 39B in March of this year.

John O'Connor from NASA Tech.

Mystery of Saturn’s Wonky B Ring: Solved

Vertical structures, among the tallest seen in Saturn's main rings, rise abruptly from the edge of Saturn's B ring to cast long shadows on the ring in this image taken by NASA's Cassini spacecraft in 2009.

It has long been known that Saturn’s rings are not the perfect hoops they appear as in small amateur telescopes, and when the Cassini spacecraft entered orbit around Saturn, the wonky disorder of the massive B ring became even more apparent. Scientists were stunned by towering vertical structures, scalloped edges on the rings, and odd propeller-like features. But scientists have now found the cause of these strange features: The region is acting just like a spiral galaxy, said Carolyn Porco, team lead of the Cassini imaging team.

“We have found what we hoped we’d find when we set out on this journey with Cassini nearly 13 years ago,” said Porco, “(and have gotten) visibility into the mechanisms that have sculpted not only Saturn’s rings, but celestial disks of a far grander scale, from solar systems, like our own, all the way to the giant spiral galaxies.”

The B ring is one of the most dynamic areas in Saturn’s rings, and surprisingly, scientists say, the rings are behaving like a miniature version of our own Milky Way galaxy.

When the the Voyager spacecraft flew by Saturn in 1980 and 1981, scientists saw that the outer edge of the planet’s B ring was shaped like a rotating, flattened football by the gravitational perturbations of Mimas. But it was clear, even in Voyager’s findings, that the outer B ring’s behavior was far more complex than anything Mimas alone might do.

Vertical Structures Tower over Saturn's B-Ring. This image was rendered using Autodesk Maya and Adobe Photoshop. Credit: Kevin Gill.
Vertical Structures Tower over Saturn’s B-Ring. This image was rendered using Autodesk Maya and Adobe Photoshop. Credit: Kevin Gill.

Through the analysis of thousands of Cassini images of the B ring taken over a four-year period, Porco and her team have found the source of most of the complexity: at least three additional, independently rotating wave patterns, or oscillations, that distort the B ring’s edge.

The oscillations travel around the ring with differing speeds and the small, random motions of the ring particles feed energy into a wave that propagates outward across the ring from an inner boundary, reflects off the outer edge of the B ring (which becomes distorted as a result), and then travels inward until it reflects off the inner boundary. This continuous back-and-forth reflection is necessary for these wave patterns to grow and become visible as distortions in the outer edge of the B ring.

Watch a video of the oscillations.

And see more “movies” at the CICLOPS website.

These oscillations, with one, two or three lobes, are not created by any moons. They have instead spontaneously arisen, in part because the ring is dense enough, and the B ring edge is sharp enough, for waves to grow on their own and then reflect at the edge.

The ring particles’ small, random motions feed energy into a wave and cause it to grow. The new results confirm a Voyager-era predication that this same process can explain all the puzzling chaotic waveforms found in Saturn’s densest rings, from tens of meters up to hundreds of kilometers wide.

“This process has already been verified to produce wave features in Saturn’s dense rings that are of small scale…about 150 meters or so,” Porco wrote in her “Captain’s Log” feature on the CICLOPS (Cassini imaging)website. “That it now also appears to produce waves of large, hundreds-of-kilometers scale in the outer B ring suggests that it can operate in dense rings on all spatial scales.”

“These oscillations exist for the same reason that guitar strings have natural modes of oscillation, which can be excited when plucked or otherwise disturbed,” said Joseph Spitale, Cassini imaging team associate and lead author of a new article in the Astronomical Journal, published today. “The ring, too, has its own natural oscillation frequencies, and that’s what we’re observing.”

Astronomers believe such “self-excited” oscillations exist in other disk systems, like spiral disk galaxies and proto-planetary disks found around nearby stars, but they have not been able to directly confirm their existence. The new observations confirm the first large-scale wave oscillations of this type in a broad disk of material anywhere in nature.

Self-excited waves on small, 100-meter (300-foot) scales have been previously observed by Cassini instruments in a few dense ring regions and have been attributed to a process called “viscous overstability.”

Oscillations in Saturn's B ring. Credit: Space Science Institute

“Normally viscosity, or resistance to flow, damps waves — the way sound waves traveling through the air would die out,” said Peter Goldreich, a planetary ring theorist at the California Institute of Technology. “But the new findings show that, in the densest parts of Saturn’s rings, viscosity actually amplifies waves, explaining mysterious grooves first seen in images taken by the Voyager spacecraft.”

“How satisfying it is to find at last one explanation for most, if not all, of the chaotic looking structure we first saw in Saturn’s dense ring regions long ago with Voyager,” said Porco, “and have since seen in exquisite detail with Cassini.”

Source: JPL, CICLOPS

The Dark Dunes of Mars

Proctor Crater Dune Field on Mars. Credit: NASA/JPL/University of Arizona

I just got lost on Mars. I saw this intriguing image, above, on the HiRISE camera website, and ended up spending a large chunk of my morning just wandering through the dunes of Mars — actually wandering through images of dunes on Mars. These striking features have to be one of the most intriguing areas of study on the Red Planet since they are one of the most dynamic geologic processes going on currently on Mars.

The dark dunes are composed of basaltic sand, and scientists believe the dunes in the image above have formed in response to fall and winter westerly winds. Also superimposed on their surface are smaller secondary dunes that are commonly seen on terrestrial dunes of this size.

See below for more intriguing dunes on Mars that I came across in my wanderings…

North Polar Dunes. Credit: NASA/JPL/University of Arizona.
Chocolate dunes? Credit: NASA/JPL/University of Arizona
Dunes and Layered Bedrock on Floor of Large Crater in Xanthe Terra. Credit: NASA/JPL/University of Arizona
Seasonal Frost on Dunes. Credit: NASA/JPL/University of Arizona
Dune Symmetry. Credit: NASA/JPL/University of Arizona
Martian Barchan Dunes. Credit: NASA/JPL/University of Arizona
Falling Material Kicks Up Cloud of Dust on Dunes. Credit: NASA/JPL/University of Arizona

We’ve posted this image before, as it really is a weird-looking landscape, but it is worth seeing again.

Polar Sand Dunes. Credit: NASA/JPL/University of Arizona

See more on the HiRISE website!

Planets and their Remnants around White Dwarfs

The white dwarf G29-38. Many stars, including our Sun, end their lives as white dwarfs. Determining the masses of white dwarf stars is key to the new technique of determining a star's age. Image Credit: NASA
The white dwarf G29-38. Many stars, including our Sun, end their lives as white dwarfs. Determining the masses of white dwarf stars is key to the new technique of determining a star's age. Image Credit: NASA

[/caption]

While supernovae are the most dramatic death of stars, 95% of stars will end their lives in a far more quiet fashion, first swelling up to a red giant (perhaps a few times for good measure) before slowly releasing their outer layers into a planetary nebula and fading away as a white dwarf. This is the fate of our own sun which will expand nearly to the orbit of Mars. Mercury, Venus, and Earth will be completely consumed. But what will happen to the rest of the planets in the system?

While many stories have suggested that as the star reaches the red giant phase, even before swallowing the Earth, the inner planets will become inhospitable while the habitable zone will expand to the outer planets, perhaps making the now frozen moons of Jupiter the ideal beach getaway. However, these situations routinely only consider planets with unchanging orbits. As the star loses mass, orbits will change. Those close in will experience drag due to the increased density of released gas. Those further out will be spared but will have orbits that slowly expand as the mass interior to their orbit is shed. Planets at different radii will feel the combination of these effects in different ways causing their orbits to change in ways unrelated to one another.

This general shaking up of the orbital system will result in the system becoming once again, dynamically “young”, with planets migrating and interacting much as they would when the system was first forming. The possible close interactions can potentially crash planets together, fling them out of the system, into looping elliptical orbits, or worse, into the star itself. But can evidence of these planets be found?

A recent review paper explores the possibility. Due to convection in the white dwarf, heavy elements are quickly dragged to lower layers of the star removing traces of elements other than hydrogen and helium in the spectra. Thus, should heavy elements be detected, it would be evidence of ongoing accretion either from the interstellar medium or from a source of circumstellar material. The author of the review lists two early examples of white dwarfs with atmospheres polluted in this respect: van Maanen 2 and G29-38. The spectra of both show strong absorption lines due to calcium while the latter has also had a dust disk detected around the star?

But is this dust disk a remnant of a planet? Not necessarily. Although the material could be larger objects, such as asteroids, smaller dust sized grains would be swept from the solar system due to radiation pressure from the star during the main sequence lifetime. Much like planets, the asteroids orbits would be perturbed and any passing too close to the star could be torn apart tidally and pollute the star as well, albeit on a much smaller scale than a digested planet. Also along these lines is the potential disruption of a potential Oort cloud. Some estimates have predicted that a planet similar to Jupiter may have it’s orbit expanded as much as a thousand times, which would likely scatter many into the star as well.

The key to sorting these sources out may again lie with spectroscopy. While asteroids and comets could certainly contribute to the pollution of the white dwarf, the strength of the spectral lines would be an indirect indicator of the averaged rate of absorption and should be higher for planets. Additionally, the ratio of various elements may help constrain where the consumed body formed in the system. Although astronomers have found numerous gaseous planets in tight orbits around their host stars, it is suspected that these formed further out where temperatures would allow for the gas to condense before being swept away. Objects formed closer in would likely be more rocky in nature and if consumed, their contribution to the spectra would be shifted towards heavier elements.

With the launch of the Spitzer telescope, dust disks indicative of interactions have been found around numerous white dwarfs and improving spectral observations have indicated that a significant number of systems appear polluted. “If one attributes all metal-polluted white dwarfs to rocky debris, then the fraction of terrestrial planetary systems that survive post-main sequence evolution (at least in part) is as high as 20% to 30%”. However, with consideration for other sources of pollution, the number drops to a few percent. Hopefully, as observations progress, astronomers will begin to discover more planets around stars between the main sequence and white dwarf region to better explore this phase of planetary evolution.