Reusable Rockets Could Fly Back to Their Launch Sites With Wings

The two architectures (top to bottom), "fly-back" and "glide-back" configurations. Credit: Balesdant, M., et al. (2023)

Reusable launch vehicles have been a boon for the commercial space industry. By recovering and refurbishing the first stages of rockets, launch providers have dramatically reduced the cost of sending payloads and even crew to space. Beyond first-stage boosters, there are efforts to make rockets entirely reusable, from second stages to payload fairings. There are currently multiple strategies for booster recovery, including mid-air retrieval using helicopters and nets. Still, the favored method involves boosters returning to a landing pad under their own power (the boost-back and landing maneuver).

This strategy requires additional rocket propellant for the booster to land again, which comes at the expense of payload mass and performance for the ascent mission. As an alternative, researchers from the National Office Of Aerospace Studies And Research (ONERA) propose two new types of strategies that would allow boosters to return to their launch site. These are known as “glide-back” and “fly-back” architectures, both of which involve boosters with lifting surfaces (fins and wings) performing vertical takeoff and horizontal landing (VTVL) maneuvers.

Continue reading “Reusable Rockets Could Fly Back to Their Launch Sites With Wings”

Touch Galaxies and Listen to Black Holes. Now You Can Explore the Universe With Multiple Senses

A tactile map of Stephan's Quintet. Credit: NASA's Universe of Learning

One of the amazing benefits of modern astronomy is the wealth of astronomical images it gives us. From Hubble to Webb, new images appear online almost every day. They are powerful and beautiful, and so bountiful they are easy to take for granted. But those images aren’t for everyone. Whether you are visually impaired, color blind, or best process information auditorily or kinesthetically, astronomical images can be extremely limiting. Because of this, NASA’s Universe of Learning project is exploring how astronomy can be conveyed in multi-sensory ways.

Continue reading “Touch Galaxies and Listen to Black Holes. Now You Can Explore the Universe With Multiple Senses”

Follow Comet E1 Atlas Through the July Sky

Comet E1 ATLAS
Comet E1 ATLAS from

Comet C/2023 E1 ATLAS skirts the northern pole for summer northern hemisphere observers.

When it comes to comets, even the best predictions may often betray reality. Bright comets may fizzle as they approach the Sun, and fainter comets that ordinarily wouldn’t warrant a second look many suddenly flare into view.

Thankfully, the former seems to be the case with comet C/2023 E1 ATLAS, which has been over-performing expectations as of late, and recently brightened up into the range of binocular visibility at magnitude +10.

Continue reading “Follow Comet E1 Atlas Through the July Sky”

Artemis Accords Adds 25th, 26th, and 27th Signatory Countries

The current list of the 27 signatory countries for the Artemis Accords. (Credit: NASA)

NASA recently welcomed the newest signatories of the Artemis Accords as Spain, Ecuador, and India became the 25th, 26th, and 27th countries, respectively, to sign on to the historic agreement for cooperation and partnership for space exploration, specifically pertaining to NASA’s Artemis program.

Continue reading “Artemis Accords Adds 25th, 26th, and 27th Signatory Countries”

Mars Lacks a Planet-Wide Magnetosphere, but it Does Have Pockets of Magnetism

Mars has magnetized rocks in its crust that create localized, patchy magnetic fields (left). In the illustration at right, we see how those fields extend into space above the rocks. At their tops, auroras can form. Credit: NASA

The Zhurong rover has operated on the surface of Mars for over a year since it deployed on May 22nd, 2021. Before the rover suspended operations on May 20th, 2022, due to the onset of winter and the approach of seasonal sandstorms, Zhurong managed to traverse a total distance of 1.921 km (1.194 mi). During the first kilometer of this trek, the rover obtained vital data on Mars’ extremely weak magnetic fields. According to a new study by researchers from the Chinese Academy of Science (CAS), these readings indicate that the magnetic field is extremely weak beneath the rover’s landing site.

Continue reading “Mars Lacks a Planet-Wide Magnetosphere, but it Does Have Pockets of Magnetism”

Germany is Building a Tiny Rover That Will Roam the Surface of Phobos

Artist's impression of the IDEFIX rover on Phobos, with the MMX spacecraft in the background. Credit: DLR

At this very moment, eleven robotic missions are operating in orbit or on the surface of Mars, more than at any point during the past sixty years. These include the many orbiters surveying the Red Planet from orbit, the handful of landers and rovers, and one helicopter (Ingenuity) studying the surface. In the coming years, many more are expected, reflecting the growing number of nations participating in the exploration process. Once there, they will join in the ongoing search for clues about the planet’s formation, evolution, and possible evidence that life once existed there.

However, there’s also the mystery concerning the origin of Phobos and Deimos, Mars’ two satellites. While scientists have long suspected that these two moons began as asteroids kicked from the Main Belt that were captured by Mars’ gravity, there is no scientific consensus on this point. This is the purpose of the Martian Moons eXploration (MMX) mission currently under development by the Japan Aerospace Exploration Agency (JAXA), which will explore both moons with the help of a Phobos rover provided by the German Aerospace Center (DLR) and the French National Center of Space Studies (CNES). 

Continue reading “Germany is Building a Tiny Rover That Will Roam the Surface of Phobos”

A Nearby Supernova Almost Destroyed the Solar System Before it Could Form

Artist’s impression of the blast wave from a supernova colliding with the molecular cloud filament where the infant Solar System was forming. Credit: NAOJ
Artist’s impression of the blast wave from a supernova colliding with the molecular cloud filament where the infant Solar System was forming. Credit: NAOJ

Way back in time, about 4.6 billion years ago, our Sun and planets were busily forming nestled inside a cloud of gas and dust. Not far away, a supernova exploded, threatening to tear everything apart. Luckily, a filament of molecular gas protected the infant Solar System from imminent destruction.

Continue reading “A Nearby Supernova Almost Destroyed the Solar System Before it Could Form”

Watching the Watchers With Nancy Grace Roman

The Earth Transit Zone, where distant observers could see the Earth pass in front of the Sun. Credit: Axel Quetz (MPIA) / Axel Mellinger, Central Michigan University

Astronomers are getting better at gathering data about exoplanets. We have discovered thousands of them, measuring their mass, size, and orbital parameters, and we are starting to measure other aspects such as their temperature and atmospheric composition. Of course, the big hope is that in time we will discover the presence of life on some of these distant worlds, and perhaps even find evidence of an alien civilization. And if there are aliens out there, it’s reasonable to assume they might be looking for us as well. A new study proposes one way we might find each other.

Continue reading “Watching the Watchers With Nancy Grace Roman”

Supervillains Take Note. Here’s a New Way to Destroy a Star

Astronomers studying a powerful gamma-ray burst (GRB) with the International Gemini Observatory may have observed a never-before-seen way to destroy a star. Credit: International Gemini Observatory/NOIRLab/NSF/AURA/M. Garlick/M. Zamani
Astronomers studying a powerful gamma-ray burst (GRB) with the International Gemini Observatory may have observed a never-before-seen way to destroy a star. Credit: International Gemini Observatory/NOIRLab/NSF/AURA/M. Garlick/M. Zamani

If you’re an evil genius supervillain looking to freak out your enemy with a big messy space kablooie, here’s a novel way to do it. Smack a couple of ancient star remnants together right in front of your nemesis. The result will give you a gratifyingly huge, bright explosion plus a bonus gamma-ray burst visible across the Universe. And, it’ll scare everybody into doing your evil bidding.

Continue reading “Supervillains Take Note. Here’s a New Way to Destroy a Star”

Another Key Amino Acid Found in Space: Tryptophan

Tryptophan found in the nebula IC348. Credit: Jorge Rebolo-Iglesias/NASA/Spitzer Space Telescope

Astrochemistry is the study of how molecules can form and react in space. Its roots trace back to the 1800s when astronomers such as William Wollaston and Joseph von Fraunhofer began identifying atomic elements from the spectral lines of the Sun. But it wasn’t until recent decades that the field began to mature.

Continue reading “Another Key Amino Acid Found in Space: Tryptophan”