The Wright Stuff

The Wright Stuff

Space holds the future of our species. While we’ve been flying for just barely over a century, we’ve also been rocketing upward for nearly as long. As these technologies advanced so did related opportunities. Space tourism is one such and Derek Webber in his book “The Wright Stuff– The Century of Effort Behind Your Ticket to Space” shows how it was such a logical progression and holds such promise from where we stand today. Through his words we see how private citizens may soon be able to enjoy and contribute to our specie’s future.

The Wright brothers first flew their human controlled aircraft in December of 1903. The author uses this as the starting point and the namesake of his book. In a lively, active voice he carries the reader along a quick, somewhat routine history of flight and rocketry. However, where most historical journeys, especially in the field of aerospace, focus upon events and technology this book espouses the individual or sometimes a couple as with the brothers Wright.

In somewhat jocular fashion, the author anoints a ‘Wright Stuff Award’ to individuals that he thinks have most significantly contributed to space tourism. Some recipients are obvious such as the Wright brothers and Sergei Korolev who respectively advanced flight and rocketry. Other recipients may cause a few surprises such as former President George Bush and Chesley Bonestell. Yet, it is clear the author’s intent is to show that major contributions to the field of space tourism have arisen from a disparate source of promoters and nurturers.

The real relevance of the book comes with its final chapter entitled Tourists. In it, the author introduces the reader to non-government individuals who have taken advantage of a spare seat or two and used government equipment, principally the Soyuz spacecraft, to journey into space. Their flights were principally for personal pleasure. The first few were sponsored. Most of the later used personal fortunes. Nearly all are still alive today. These, the book says, are the original tourists and they are the ones shown to be as much benefactors as champions of human space flight.

While the early part of this book stressed the individual and their accomplishments, the very last section extends tourism into the future. In it, the author runs through a cacophony of current companies, developers and pioneers who are vibrantly competing against each other to offer reasonable and attractive space travel packages. Some seem to have much promise such as Virgin Space with its new space port and White Knight 2 vehicle. Others have just started test flights while still others are in the planning stages. All however show themselves to be part of a busy business sector aiming to offer, at a reasonable cost, a few hours travel into or very close to space.

With the historical progression and the review of current organizations, the
author has shown that space tourism has solid groundwork and that supporting infrastructure continues to flourish. The book doesn’t however address some base questions. The principle one is that so much of the current industry is still Earth focused. People fly up to the edge of space, see the curvature of the Earth and fly back down. As such it would be a small step in moving our species spaceward but space travel would still be a long way down the road. As well, the book doesn’t deal with much substantiation of the business case for space tourism. There is mention of the Commission on the Future of the US Aerospace Industry. But, placing the future of our species at the vagaries of discretionary spending seems at best opportunistic. Thus while the book shows progress, the progress may be fleeting rather than a permanent capability.

This book does present a brash, bold and optimistic view of space tourism. Derek Webber’s “The Wright Stuff– The Century of Effort Behind Your Ticket to Space” looks at positive contributions through humankind’s brief history of flight and insights a positive feel into space tourism. There would be no surprise if after reading this book, the reader began saving for their own future ride into space.

Click here to read more reviews or buy this book from Amazon.com.

Re-Discovery; Orbiter makes second trip out to the launch pad for STS-133

Discovery, resplendent in her xenon glow, heads to the launch pad for her date with history. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]

CAPE CANAVERAL – Space shuttle Discovery was wheeled out of the Vehicle Assembly Building (VAB) on one of the massive crawler-transporters toward launch complex 39A – and its final mission – STS-133, currently scheduled for launch on February 24 at 4:50 p.m. EST (21:50 GMT). This marks the second trip out to the launch pad for Discovery; the orbiter had to be taken back to the VAB for scans and repairs.

Discovery was first wheeled out to LC 39A on Sept. 20, 2010. The Nov. 5 launch attempt was aborted due to a leaky Ground Umbilical Carrier Plate (GUCP). When engineers were checking out this problem, they discovered another, a section of popped up foam on the shuttle’s external tank. Foam has been a concern ever since a briefcase-sized piece of foam led to the loss of the shuttle Columbia in 2003.

In this image, Discovery rolls past the turn basin at NASA's Kennedy Space Center in Florida. Photo Credit Alan Walters/awaltersphoto.com

Further inspection showed that the cracks extended all the way down to the aluminum skin of the external tank. As engineers looked further more and more of these cracks were discovered around what is known as the “intertank” region. Engineers did what repairs that they could out at the launch pad. Then the large, orange tank was filled with the super-cooled fuel that powers the shuttle into orbit. When tanking occurs, the tank can shrink by as much as half-an-inch.

Discovery, bathed in xenon lights heads toward her date with history. Photo Credit: Jason Rhian

With the realization that this shrinkage could severely impact the cracks, 89 sensors were placed around this area to monitor the effect of fueling the external tank. To properly check any potential impact the tanking had, scans would need to be conducted and that meant a trip back to the VAB. So Discovery was rolled back to the VAB for X-Rays and other scans.

Once the area was given a thorough inspection, more cracks were found and further repairs were required. But during this time NASA had discovered what was causing these small cracks to occur and Discovery was set to head back out to the launch pad for her date with history.

Reflected in the turn basin, the space shuttle Discovery heads off into the distance. Photo Credit: Jason Rhian

Discovery began its slow methodical trek out to the launch pad at 8 p.m. EDT. The trip takes several hours to reach its destination, as the pondering crawler-transporter that hauls the spacecraft out to the launch pad moves at a blistering one mile an hour.

Discovery’s final mission is a resupply flight to the International Space Station. The orbiter will ferry a modified cargo carrier, the Leonardo Permanent Multipurpose Module along with much-needed supplies and the first human-like robot to fly into space – Robonaut-2. The crew consists of commander Steve Lindsey, Pilot Eric Boe and mission specialists Michael Barratt, Alvin Drew, Nicole Stott and Steve Bowen.

Bowen is a last-minute replacement for Tim Kopra, who broke his hip in a bicycle accident earlier this month.

Shuttle Discovery makes her way to launch complex 39A for her upcoming launch of the STS-133 crew to the International Space Station. Photo Credit: Jason Rhian
Discovery inside the VAB before rollout. Credit: Alan Walters (awaltersphoto.com) for Universe Today
Discovery inside the VAB before rollout. Credit: Alan Walters (awaltersphoto.com) for Universe Today
Discovery inside the VAB before rollout. Credit: Alan Walters (awaltersphoto.com) for Universe Today
Discovery inside the VAB before rollout. Credit: Alan Walters (awaltersphoto.com) for Universe Today
Discovery heading to the launchpad on January 31, 2011. Credit: Alan Walters (awaltersphoto.com) for Universe Today

Satellite View: Huge Storm Heads Across the US

The GOES-13 satellite captured this image on Jan. 31, 2011 of a major winter storm covering a large portion of the US. Image Credit: NOAA/NASA GOES Project

[/caption]

The roads are a skating rink where I live! This visible image was captured by the GOES-13 satellite on January 31, 2011 and it shows the low pressure area bringing snowfall to the Midwest US. Heavy snow is expected today in portions of northern Iowa, southern Minnesota and Wisconsin. Snowfall from the system extends from Michigan west to Montana, Idaho, Utah and Arizona. A mix of rain and snow also stretches into the Ohio and Tennessee valleys, and it is all moving east. This system appears to be as large as 1/3rd of the Continental U.S.

Meanwhile, in another hemisphere on the other side of the world a huge tropical cyclone threatens parts of Australia that has already been suffering from flooding.

of Tropical Cyclone Yasi taken at 6:29 a.m. PST (9:29 a.m. EST) on Jan. 31, 2011. Areas colored purple represent the storm's coldest cloud-top temperatures and areas of heaviest precipitation. Image credit: NASA/JPL-Caltech

The northeastern Australian state of Queensland is now bracing for what could become one of the largest tropical cyclones the state has ever seen.

The Atmospheric Infrared Sounder (AIRS) instrument on NASA’s Aqua satellite captured this infrared image of Yasi on Jan. 31, 2011, at 6:29 a.m. PST (9:29 a.m. EST). The AIRS data create an accurate 3-D map of atmospheric temperature, water vapor and clouds, data that are useful to forecasters. The image shows the temperature of Yasi’s cloud tops or the surface of Earth in cloud-free regions.

The coldest cloud-top temperatures appear in purple, indicating towering cold clouds and heavy precipitation. The infrared signal of AIRS does not penetrate through clouds. Where there are no clouds, AIRS reads the infrared signal from the surface of the ocean waters, revealing warmer temperatures in orange and red.

At the approximate time this image was taken, Yasi had maximum sustained winds near 90 knots (166 kilometers per hour, or 103 mph), equivalent to a Category Two hurricane on the Saffir-Simpson Scale. It was centered about 1,400 kilometers (875 miles) east of Cairns, Australia, moving west at about 19 knots per hour (35 kilometers per hour, or 22 mph). Cyclone-force winds extend out to 48 kilometers (30 miles) from the center.

Yasi is forecast to move west, then southwestward, into an area of low vertical wind shear (strong wind shear can weaken a storm). Forecasters at the Joint Typhoon Warning Center expect Yasi to continue to strengthen over the next 36 hours. The Center forecasts a landfall just south of Cairns as a large 100-plus knot-per-hour (185 kilometers per hour, or 115 mph) system by around midnight local time on Wednesday, Feb. 2.

Sources: JPL, NASA Earth Observatory

More Space Anniversaries: Apollo 14 and Ham

Chimpanzee Ham after the successful Mercury-Redstone 2 (MR-2) suborbital flight. Credit: NASA

Forty years ago today, the Apollo 14 crew launched on their Saturn V rocket, the 6th human flight to the Moon and the third that landed. Following the heart-stopping problems of Apollo 13, almost ten months elapsed before Commander Alan Shepard (the first American in space), Command Module Pilot Stuart Roosa, and Lunar Module Pilot Edgar Mitchell set off on January 31, 1971. They reached the Moon on February 5, and Shepard and Mitchell walked the Fra Mauro highlands, originally been the target of the aborted Apollo 13 mission. The two astronauts had to scrap a planned rock-collecting trip to the 1,000 foot wide Cone Crater when they became disoriented and almost got lost. Interestingly, recent images from the Lunar Reconnaissance Orbiter revealed they were only a little over 30 yards from the crater’s rim when they gave up the search. But they did have many successes as well.


You can read more about Apollo 14 on this NASA website.

[/caption]

Also on this date 50 years ago was the flight that made Alan Shepard’s suborbital Mercury flight possible: the Mercury-Redstone 2 (MR-2) mission carrying Ham, a four-year-old male chimpanzee. The suborbital flight lasted a total of 16 minutes and 39 seconds, and carried the spacecraft 422 nautical miles from the launch site at Cape Canaveral, FL, reaching a maximum altitude of 157 statute miles. The flight reached all its objectives, paving the way for human flights.

When you think about it, 10 years from Ham to Apollo 14 is pretty amazing. But we’re not likely to ever see anything like that again.

Read more about Ham’s flight and see more pictures on NASA’s Life Sciences Database website.

First Ever Whole Sun View .. Coming Soon from STEREO

On Super Bowl SUNday - Feb 6, 2011; the two NASA STEREO spacecraft willl see the entire Sun ! Superbowl SUNday will truly mark a milestone for solar observations. On Ferbruary 6, the two STEREO spacecrafts will be 180 degrees apart and for the next 8 years the STEREO spacecrafts and SDO will be able to observe the entire 360 degrees of the Sun. Credit: NASA. Watch the cool STEREO Whole Sun Preview Video below. Plus Launch Video and more photos below.

[/caption]

“For the first time in the history of humankind we will be able to see the front and the far side of the Sun … Simultaneously,” Madhulika Guhathakurta told Universe Today. Guhathakurta is the STEREO Program Scientist at NASA HQ.

Courtesy of NASA’s solar duo of STEREO spacecraft.

And the noteworthy event is timed to coincide just perfectly with ‘Super Bowl SUNday’ – Exactly one week from today on Feb. 6 during Super Bowl XLV !

“This will be the first time we can see the entire Sun at one time,” said Dean Pesnell, NASA Solar Astrophysicist in an interview for Universe Today. Pesnell is the Project Scientist for NASA’s Solar Dynamics Observatory at the NASA Goddard Spaceflight Center in Greenbelt, MD.

This remarkable milestone will be achieved when NASA’s two STEREO spacecraft reach position 180 degrees separate on opposite sides of the Sun on Sunday, Feb. 6, 2011 and can observe the entire 360 degrees of the Sun.

“We are going to celebrate by having a football game that night!” Pesnell added in jest.

The nearly identical STEREO spacecraft – dubbed STEREO Ahead and STEREO Behind – are orbiting the sun and providing a more complete picture of the Suns environment with each passing day. One probe follows Earth around the sun; the other one leads the Earth.

STEREO is the acronym for Solar TErrestrial RElations Observatory. Their mission is to provide the very first, 3-D “stereo” images of the sun to study the nature of coronal mass ejections.

Today, (Jan 30) the twin STEREO spacecraft are 179.1 degrees apart and about 90 degrees from Earth, and thus virtually at the midpoint to the back of the sun. See the orbital location graphics above and below.

Both probes were flung into space some four years ago and have been hurtling towards this history making date and location ever since. The wedge of unseen solar territory has been declining.

As the STEREO probes continue flying around to the back side of the sun, the wedge of unseen solar territory on the near side will be increasing and the SDO solar probe will play a vital gap filling role.

“SDO provides the front side view of the sun with exquisite details and very fast time resolution,” Gutharka told me. For the next 8 years, when combined with SDO data, the full solar sphere will still be visible.

The Whole Sun will be simultaneously Imaged for the First tIme ever on Super Bowl SUNday Feb. 6.
For the past 4 years, the two STEREO spacecraft have been moving away from the Earth and gaining a more complete picture of the sun. On February 9, 2011, NASA will hold a press conference to reveal the first ever images of the entire sun and discuss the importance of seeing all of our dynamic star.
Credit: NASA

The solar probes were launched together aboard a Delta II rocket from Launch Complex 17B at Cape Canaveral Air Force Station (CCAFS) in Florida on October 25, 2006. See Launch Video and Photos below.

Whole Solar Sphere A Goldmine for Science

I asked Pesnell and Guhathakurta to explain why this first ever whole Sun view is a significant scientific milestone.

“Until now there has always been an unseen part of the Sun,” Pesnell explained. “Although that unseen part has always rotated into view within a week or two, a global model must include all of the Sun to understand where the magnetic field goes through the surface.”

“Also, from the Earth we can see only one pole of the Sun at a time, while with STEREO we can see both poles at the same time.

“The next few years of overlapping coronal images will be a goldmine of information for predicting space weather at the Earth and understanding of how the Sun works. It is like getting the GOES images of the Earth for the first time. We haven’t missed a hurricane since, and now we won’t miss an active region on the Sun,” said Pesnell.

How will the science data collected be used to understand the sun and its magnetic field?

“Coronal loops trace out the magnetic field in the corona,” Pesnell elaborated. “Understanding how that magnetic field changes requires seeing where on the surface each loop starts and stops.”

Why is it important to image the entire Sun ?

“Once images of the entire Sun are available we can model the entire magnetic field of the Sun. This has become quite important as we are using STEREO and SDO to study how the entire magnetic field of the Sun reacts to the explosions of even small flares.”

“By seeing both poles we should be able to understand why the polar magnetic field is a good predictor of solar activity,” said Pesnell.

“Seeing both sides will help scientists make more accurate maps of global coronal magnetic field and topology as well as better forecasting of active regions – areas that produce solar storms – as they rotate on to the front side. Simultaneous observations with STEREO and SDO will help us study the sun as a complete whole and greatly help in studying the magnetic connectivity on the sun and sympathetic flares, ” Guhathakurta amplified.

Latest EUVI Images from STEREO. These Extreme Ultra Violet Images from STEREO Ahead and Behind were taken on Jan. 30, 2011. Credit: NASA

Watch a solar rotation animation here combining EUVI and SDO/AIA:

What is the role and contribution of NASA’s SDO mission and how will SDO observations be coordinated with STEREO?

“As the STEREO spacecraft drift around the Sun, SDO will fill in the gap on the near of the Sun,” explained Pesnell. “For the next 4 or more years we will watch the increase in sunspots we call Solar Cycle 24 from all sides of the Sun. SDO has made sure we are not doing calibration maneuvers for a few days around February 6.”

“On Feb 6th we will view 100% of the sun,” said Guhathakurta.

At a press conference on Feb. 9, 2011, NASA scientists will reveal something that no one has even seen – The first ever images of ‘The Entire Sun’. All 360 degrees

Watch the briefing on NASA TV at 2 PM EST

More about the SDO mission and SDO science
and Coronal holes from STEREO and SDO here

STEREO Website

“3D Sun”
A STEREO Movie in Digital and IMAX was released in 2007
Watch the way cool 3D IMAX trailer below

STEREO spacecraft location map

Caption: Positions of STEREO A and B for 31-Jan-2011 05:00 UT. The STEREO spacecraft are 179.2 degrees apart and about 90 degrees from Earth on Jan. 31, 2011. This figure plots the current positions of the STEREO Ahead (red) and Behind (blue) spacecraft relative to the Sun (yellow) and Earth (green). The dotted lines show the angular displacement from the Sun. Units are in A.U. (Astronomical Units). Credit: NASA

STEREO Launch Video

Launch Video Caption: The Delta II rocket lights the evening sky as STEREO heads into space on October 25, 2006 at 8:52 p.m. The Delta II rocket lights the evening sky as STEREO heads into space. STEREO (Solar Terrestrial Relations Observatory) is a multi-year mission using two nearly identical observatories, one ahead of Earth in its orbit and the other trailing behind. The duo will provide 3-D measurements of the sun and its flow of energy, enabling scientists to study the nature of coronal mass ejections and why they happen.

Fully fueled, technicians prepare the STEREO spacecraft for spin testing in the cleanroom in Titusville, Fl, while being prepared for launch. Credit: nasatech.net

Delta Launch Complex 17 comprises two launch pads and towers, 17 A & 17 B, at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer
View of Delta II Launch Complex 17 by Ken Kremer

Fully clear of the smoke, STEREO streaks skyward during launch on October 25, 2006 from Pad 17B at Cape Canaveral, FL. Credit: nasatech.net

More STEREO Cleanroom and Launch photos from nasatech.net here

More about the SDO mission and SDO science
and Coronal holes from STEREO and SDO here

STEREO Website

“3D Sun”
A STEREO Movie in Digital and IMAX was released in 2007

Watch the way cool 3D trailer here – Trailer narrated by NASA’s Madhulika Guhathakurta
— be sure to grab hold of your Red-Cyan Glasses

Challenger Astronauts Memorialized on the Moon

Craters in the center of Apollo basin named after Space Shuttle Challenger astronauts. Credit: NASA/GSFC/Arizona State University.

[/caption]

Shortly after the loss of the Space Shuttle Challenger in 1986, seven craters on the eastern rim of the Apollo basin were named after the crew: Gregory Jarvis, Christa McAuliffe, Ronald McNair, Ellison Onizuka, Judith Resnik, Dick Scobee, Michael Smith. The Lunar Reconnaissance Orbiter Wide Angle Camera recently took this image of the region. Below is a video from the Kaguya spacecraft flying over the area.

According to OnOrbit, the crater “Onizuka” is incorrectly identified in this video. Rather, “Onizuka” is the crater next and to the right of the one labeled in the video as “The Onizuka”.

The Apollo Basin is not where I would have guessed — the area around the Moon’s equator on the near side where all the Apollo landings took place — but instead is a 524 km-diameter impact basin located within the center of the the giant South Pole-Aitken basin, (36°S, 209°E).

See more about the image and explore the entire region with LROC’s “zoomify” feature at the LRO website.

Astronomy Without A Telescope – Gravity Probe B

Gravity Probe B - testing the null hypothesis that the spin axis of a gyroscope should stay aligned with a distant reference point when it's in a free fall orbit. But Einstein says no.

[/caption]

There’s a line out of an early episode of The Big Bang Theory series, where Gravity Probe B is described as having seen ‘glimpses’ of Einstein’s predicted frame-dragging effect. In reality, it is not entirely clear that the experiment was able to definitively distinguish a frame-dragging effect from a background noise created by some exceedingly minor aberrations in its detection system.

Whether or not this counts as a glimpse – frame-dragging (the alleged last untested prediction of general relativity) and Gravity Probe B have become linked in the public consciousness. So here’s a quick primer on what Gravity Probe B may or may not have glimpsed.

The Gravity Probe B satellite was launched in 2004 and set into a 650 kilometer altitude polar orbit around the Earth with four spherical gyroscopes spinning within it. The experimental design proposed that in the absence of space-time curvature or frame-dragging, these gyroscopes moving in a free fall orbit should spin with their axis of rotation unerringly aligned with a distant reference point (in this case, the star IM Pegasi).

To avoid any electromagnetic interference from the Earth’s magnetic field, the gyroscopes were housed within a lead-lined thermos flask – the shell of which was filled with liquid helium. This shielded the instruments from external magnetic interference and the cold enabled superconductance within the detectors designed to monitor the gyroscopes’ spin.

Slowly leaking helium from the flask was also used as a propellant. To ensure the gyroscopes remained in free fall in the event that the satellite encountered any atmospheric drag – the satellite could make minute trajectory adjustments, essentially flying itself around the gyroscopes to ensure they never came in to contact with the sides of their containers.

Now, although the gyroscopes were in free fall – it was a free fall going around and around a space-time warping planet. A gyroscope moving at a constant velocity in fairly empty space is also in a ‘weightless’ free fall – and such a gyroscope could be expected to spin indefinitely about its axis, without that axis ever shifting. Similarly, under Newton’s interpretation of gravity – being a force acting at a distance between massive objects – there is no reason why the spin axis of a gyroscope in a free fall orbit should shift either.

But for a gyroscope moving in Einstein’s interpretation of a steeply curved space-time surrounding a planet, its spin axis should ‘lean over’ into the slope of space-time. So over one full orbit of the Earth, the spin axis will end up pointing in a slightly different direction than the direction it started from – see the animation at the end of this clip. This is called the geodetic effect – and Gravity Probe B did effectively demonstrate this effect’s existence to within only a 0.5% likelihood that the data was showing a null effect.

But, not only is Earth a massive space-time curving object, it also rotates. This rotation should, theoretically, create a drag on the space-time that the Earth is embedded within. So, this frame-dragging should tug something that’s in orbit forward in the direction of the Earth’s rotation.

Where the geodetic effect shifts a polar-orbiting gyroscope’s spin axis in a latitudinal direction – frame-dragging (also known as the Lense-Thirring effect), should shift it in a longitudinal direction.

The expected outcome. Orbiting through warped space-time shifts the spin axis of an gyroscope. But the anticipated frame-dragging shift has proved difficult to detect.

And here is where Gravity Probe B didn’t quite deliver. The geodetic effect was found to shift the gyroscopes spin axis by 6,606 milliarcseconds per year, while the frame-dragging effect was expected to shift it by 41 milliarcseconds per year. This much smaller effect has been difficult to distinguish from a background noise arising from minute imperfections existing within the gyroscopes themselves. Two key problems were apparently a changing polhode path and larger than expected manifestation of a Newtonian gyro torque – or let’s just say that despite best efforts, the gyroscopes still wobbled a bit.

There is ongoing work to laboriously extract the expected data of interest from the noisy data record, via a number of assumptions which might yet be subject to further debate. A 2009 report boldly claimed that the frame-dragging effect is now plainly visible in the processed data – although the likelihood that the data represents a null effect is elsewhere reported at 15%. So maybe glimpsed is a better description for now.

Incidentally, Gravity Probe A was launched back in 1976 – and in a two hour orbit effectively confirmed Einstein’s redshift prediction to within 1.4 parts in 10,000. Or let’s just say that it showed that a clock at 10,000 km altitude was found to run significantly faster than a clock on the ground.

Further reading: The Gravity Probe B experiment in a nutshell.

Ken Kremer on Today’s APOD

Opportunity at Santa Maria Crater Credit: Mars Exploration Rover Mission, NASA, JPL, Cornell; Image Processing: Marco Di Lorenzo, Kenneth Kremer

[/caption]

Congrats to Universe Today writer Ken Kremer and his image processing partner Marco Di Lorenzo for their handiwork being featured on today’s Astronomy Picture of the Day. It’s one of their great images they have enhanced of the Opportunity Rover peering into its current location at Santa Maria Crater on Mars. Check it out on APOD!

Carnival of Space 182

The Carnival of Space 182 is up at nextbigfuture

After a one month hiatus, the Carnival of Space is back. Nextbigfuture will be working with Universe today on the organization of the Carnival of Space. There are hosts signed up into April already.

This week Carnival of space has an animation video of the Mars moon Phobos, nuclear fusion for space propulsion, vacuum engineering, cataclysmic variables and much more.