Disturbance in the Force – A Spatially Varying Fine Structure Constant

Illustration of the dipolar variation in the fine-structure constant, alpha, across the sky, as seen by the two telescopes used in the work: the Keck telescope in Hawaii and the ESO Very Large Telescope in Chile. IMAGE CREDIT: Copyright Dr. Julian Berengut, UNSW, 2010.

[/caption]

In order for astronomers to explore the outer reaches of our universe, they rely upon the assumption that the physical constants we observe in the lab on Earth are physically constant everywhere in the universe. This assumption seems to hold up extremely well. If the universe’s constants were grossly different, stars would fail to shine and galaxies would fail to coalesce. Yet as far we we look in our universe, the effects which rely on these physical constants being constant, still seem to happen. But new research has revealed that one of these constants, known as the fine structure constant, may vary ever so slightly in different portions of the universe.

Of all physical constants, the fine structure constant seems like an odd one to be probing with astronomy. It appears in many equations involving some of the smallest scales in the universe. In particular, it is used frequently in quantum physics and is part of the quantum derivation of the structure of the hydrogen atom. This quantum model determines the allowed energy levels of electrons in the atoms. Change this constant and the orbitals shift as well.

Since the allowed energy levels determine what wavelengths of light such an atom can emit, a careful analysis of the positioning of these spectral lines in distant galaxies would reveal variations in the constant that helped control them. Using the Very Large Telescope (VLT) and the Keck Observatory, a team from the University of New South Whales has analyzed the spectra of 300 galaxies and found the subtle changes that should exist if this constant was less than constant.

Since the two sets of telescopes used point in different directions (Keck in the Northern hemisphere and the VLT in the Southern), the researchers noticed that the variation seemed to have a preferred direction. As Julian King, one of the paper’s authors, explained, “Looking to the north with Keck we see, on average, a smaller alpha in distant galaxies, but when looking south with the VLT we see a larger alpha.”

However, “it varies by only a tiny amount — about one part in 100,000 — over most of the observable universe”. As such, although the result is very intriguing, it does not demolish our understanding of the universe or make hypotheses like that of a greatly variable speed of light plausible (an argument frequently tossed around by Creationists). But, “If our results are correct, clearly we shall need new physical theories to satisfactorily describe them.”

While this finding doesn’t challenge our knowledge of the observable universe, it may have implications for regions outside of the portion of the universe we can observe. Since our viewing distance is ultimately limited by how far we can look back, and that time is limited by when the universe became transparent, we cannot observe what the universe would be like beyond that visible horizon. The team speculates that beyond it, there may be even larger changes in this constant which would have large effects on physics in such portions. They conclude the results may, “suggest a violation of the Einstein Equivalence Principle, and could infer a very large or in finite universe, within which our `local’ Hubble volume represents a tiny fraction, with correspondingly small variations in the physical constants.”

This would mean that, outside of our portion of the universe, the physical laws may not be suitable for life making our little corner of the universe a sort of oasis. This could help solve the supposed “fine-tuning” problem without relying on explanations such as multiple universes.

Want some other articles on this subject? Here’s an article about there might be 10 dimensions.

Where In The Universe Challenge #118

Where In the Universe #118

[/caption]

Here’s this week’s Where In The Universe Challenge. You know what to do: take a look at this image and see if you can determine where in the universe this image is from; give yourself extra points if you can name the telescope or spacecraft responsible for the image. We’ll provide the image today, but won’t reveal the answer until tomorrow. This gives you a chance to mull over the image and provide your answer/guess in the comment section. Please, no links or extensive explanations of what you think this is — give everyone the chance to guess.

UPDATE: The answer has now been posted below.

Although “carpet” was the first thing I thought of when I saw this image, it actually is on Mars, and was taken by the HiRISE camera on board the Mars Reconnaissance Orbiter in 2008. These are numerous pit craters in polar layered deposits. Pit craters are depressions formed by a sinking of the ground surface lying above a void or empty chamber, (like the lava tubes seen on the Moon recently) rather than by meteor impacts or the eruption of a volcano or lava vent. I’m trying to imagine what this region would look like if you were standing in amongst these pits. The resolution listed on this image is that objects ~96 cm (38 inches) across resolved, so it is quite close up. See a larger version and more info on this image at the HiRISE website.

And check back next week for another WITU challenge!

Boeing to Offer Commercial Flights to Space

The aerospace company Boeing is developing a crew transportation vehicle and today announced an agreement with the space marketing company Space Adventures to offer commercial passenger seats on the Boeing Crew Space Transportation-100 (CST-100) spacecraft, which is being built to with the capability to fly to the International Space Station as well as other future low Earth orbit private space stations. The spacecraft will be able to carry seven people, and is being designed to fly on multiple launch vehicles. It is expected to be operational by 2015.
Continue reading “Boeing to Offer Commercial Flights to Space”

LRO Takes Closer Look at Moon Caves

Spectacular high Sun view of the Mare Tranquillitatis pit crater revealing boulders on an otherwise smooth floor. Image is 400 meters wide, north is up, NAC M126710873R [NASA/GSFC/Arizona State University].

As promised, the Lunar Reconnaissance Orbiter is taking more detailed looks at the lunar pits, or lava tubes that have been discovered by LRO and the Kaguya spacecraft. These are deep holes on the moon that could open into vast underground tunnels, and could serve as a safe, radiation shielding habitats for future human lunar explorers. Plus, they are just plain intriguing! This image of a pit found in the Sea of Tranquility (Mare Tranquillitatis) was taken as the Sun was almost straight overhead, illuminating the region. By comparing this image with previous images that have different lighting, scientists can estimate the depth of the pit. They believe it to be over 100 meters!

See more “in-depth” look at more of the caves on the Moon, below:

Two views of Mare Ingenii pit Credit: NASA/GSFC/Arizona State University.

These two images show a pit in Mare Ingenii, which reveal different portions of the floor as the Sun crosses from west to east. Again, by measuring the shadows in different lighting, the Sea of Cleverness pit appears to be about 70 meters deep and about 120 meters wide.

These long, winding lava tubes are like structures we have on Earth. They are created when the top of a stream of molten rock solidifies and the lava inside drains away, leaving a hollow tube of rock. There have been hints that the Moon had lava tubes based on observations of long, winding depressions carved into the lunar surface by the flow of lava, called sinuous rilles.

If a human geologist could ever climb down inside these tubes on the Moon, we could learn so much about the Moon’s history, and sort of travel back in time by studying the different layers on the Moon, just like we do on Earth.

Three views of the Marius Hills pit. Credit: NASA/GSFC/Arizona State University.

LROC has now imaged the Marius Hills pit three times, each time with very different lighting. The center view has an incidence angle of 25° that illuminates about three-quarters of the floor. The Marius pit is about 34 meters deep and 65 by 90 meters wide.

Read more about the Ingenii, Tranquillitatis, and Marius pits at the LROC website, and you can search the nearby area for clues in the full LROC NAC frame that may help determine if an extended lava tube system still exists beneath the surface.

Source: LROC website

Planck, XMM Newton Find New Galaxy Supercluster

A newly discovered supercluster of galaxies detected by Planck and XMM-Newton. This is the first supercluster to be discovered through its Sunyaev-Zel'dovich Effect. Copyright: Planck image: ESA/LFI & HFI Consortia; XMM-Newton image: ESA

[/caption]

Scanning the sky in microwaves, the Planck mission has obtained its very first images of galaxy clusters, and found a previously unknown supercluster which is among one of the largest objects in the Universe. The supercluster is having an effect on the Cosmic Microwave Background, and the observed distortions of the CMB spectrum are used to detect the density perturbations of the universe, using what is called the Sunyaev–Zel’dovich effect (SZE). This is the first time that a supercluster has been discovered using the SZE. In a collaborative effort, the XMM Newton spacecraft has confirmed the find in X-rays.

Sunyaev-Zel’dovich Effect (SZE) effect describes the change of energy experienced by CMB photons when they encounter a galaxy cluster as they travel towards us, in the process imprinting a distinctive signature on the CMB itself. The SZE represents a unique tool to detect galaxy clusters, even at high redshift. Planck is able to look across nine different microwave frequencies (from 30 to 857 GHz) to remove all sources of contamination from the CMB, and over time, will provide what is hoped to be the sharpest image of the early Universe ever.

“As the fossil photons from the Big Bang cross the Universe, they interact with the matter that they encounter: when travelling through a galaxy cluster, for example, the CMB photons scatter off free electrons present in the hot gas that fills the cluster,” said Nabila Aghanim of the Institut d’Astrophysique Spatiale in Orsay, France, a leading member of the group of Planck scientists investigating SZE clusters and secondary anisotropies. “These collisions redistribute the frequencies of photons in a particular way that enables us to isolate the intervening cluster from the CMB signal.”

Since the hot electrons in the cluster are much more energetic than the CMB photons, interactions between the two typically result in the photons being scattered to higher energies. This means that, when looking at the CMB in the direction of a galaxy cluster, a deficit of low-energy photons and a surplus of more energetic ones is observed.

The SZE signal from the newly discovered supercluster arises from the sum of the signal from the three individual clusters, with a possible additional contribution from an inter-cluster filamentary structure. This provides important clues about the distribution of gas on very large scales which is, in turn, crucial also for tracing the underlying distribution of dark matter.

These images of the Coma cluster (also known as Abell 1656), a very hot and nearby cluster of galaxies, show how it appears through the Sunyaev-Zel'dovich Effect (top left) and X-ray emission (top right). Copyright: Planck image: ESA/ LFI & HFI Consortia; ROSAT image: Max-Planck-Institut für extraterrestrische Physik; DSS image: NASA, ESA, and the Digitized Sky Survey 2. Acknowledgment: Davide De Martin (ESA/Hubble)

“The XMM-Newton observations have shown that one of the candidate clusters is in fact a supercluster composed of at least three individual, massive clusters of galaxies, which Planck alone could not have resolved,” said Monique Arnaud, who leads the Planck group following up sources with XMM-Newton.

“This is the first time that a supercluster has been discovered via the SZE,” said Aghanim. “This important discovery opens a brand new window on superclusters, one which complements the observations of the individual galaxies therein.”

Superclusters are large assemblies of galaxy groups and clusters, located at the intersections of sheets and filaments in the wispy cosmic web. As clusters and superclusters trace the distribution of both luminous and dark matter throughout the Universe, their observation is crucial to probe how cosmic structures formed and evolved.

The first Planck all-sky survey began in mid-August 2009 and was completed in June 2010. Planck will continue to gather data until the end of 2011, during which time it will complete over four all-sky scans.

The Planck team is currently analyzing the data from the first all-sky survey to identify both known and new galaxy clusters for the early Sunyaev-Zel’dovich catalogue, which will be released in January of 2011.

Source: ESA

Scientists Predict Earth-Like Habitable Exoplanet Will Be Found in 2011

An artist’s impression of Gliese 581d, an exoplanet about 20.3 light-years away from Earth, in the constellation Libra. Credit: NASA

[/caption]

Two astronomers have written a paper and say that the first Earth-like, habitable exoplanet will be announced in May of 2011. Do they have inside information, a crystal ball, or amazing powers of prediction? No, they base their projection on math and trends from the past 15 years of exoplanet discoveries. And if the discoveries continue at their present rate, the researchers say next year is the year of the long awaited holy grail of finding another Earth-like planet out in the cosmos.

Samuel Arbesman from Harvard Medical School in Boston and Gregory Laughlin at the University of California, Santa Cruz take a scientometric approach to their prediction. Scientometrics is the science of measuring and analyzing science, and is often done using bibliometrics which is a measurement of the impact of scientific publications. Arbesman and Laughlin said this type of work highlights the usefulness of predictive scientometric techniques to understand the pace of scientific discovery in many fields.

They use the properties of previously discovered exoplanets along with external estimates for the discovery of the first potentially habitable extrasolar planet.

In their paper they indicate that since astronomers have been discovering extrasolar planets at an increasing rate since 1995 and the discoveries follow a well understood pattern, it should be easy to predict when planet searchers will hit the jackpot.

The first exoplanets found were the massive Jupiter or larger-sized planets which were the easiest to find, and then as techniques improved over the past 15 years, astronomers have found smaller planets, some just a few times more massive than Earth.

A single realization of the habitability of extrasolar planets over time. H values for the extrasolar planets are plotted, with those of the upper envelope (maximum H for a given year of discovery) indicated in black. The black curve is the logistic best- t curve of the upper envelope, using a nonlinear model, where R = 28:78 and y = 2011:10. The horizontal grey line indicates the maximum value of H = 1, the presence of an Earth-like habitable planet. Credit: Arbesman and Laughlin

Arbesman and Laughlin took that rate of discovery, and they also needed to factor in all the variables for what we think will make a planet habitable: the surface temperature must allow liquid water to exist, so that life as we know it can appear, and that depends on the size of the star, how far the planet orbits from its star, and what type of surface the exoplanet has.

They conclude there is a 66 per cent probability of finding another Earth by 2013, a 75 per cent probability by 2020, and a 95 per cent probability by 2264, but the median date of discovery is in May 2011. And not just sometime in May, but “early May.”

In June 2010, the Kepler Telescope team revealed they had found 750 exoplanet candidates, and a fair number of those confirmed might be Earth-sized. They expect they can confirm and announce some of these candidates in February 2011. But Arbesman and Laughlin predict it might take longer. “Because of the limited time base line of the mission to date, the Kepler planet candidates to published in February 2011 may be too hot to support significant values for H (which is their habitability metric),” they wrote in their paper.

So, if their prediction comes true, that might mean another team, such as the HARPS, or Keck, or CoRoT, or other exoplanet-finding wizards might make the discovery.

“It must be noted that by publicizing our prediction, there is a concern that it will become accurate,” Arbesman and Laughlin write in their paper, “simply due to the well-studied Hawthorne Effect. However, due to the large number of observations and long periods of time required to confirm an extrasolar planet discovery, it is unlikely that our prediction at this time will appreciably affect the announcement of the discovery of an Earth-like planet. Therefore, it is reasonable to use the habitability metric curve as a rough prediction for when the first potentially habitable planet will be discovered, in this case, as early as May 2011, and likely by the end of 2013.”

It will be interesting to see how accurate their prediction turns out to be!

Read the paper: “A Scientometric Prediction of the Discovery of the First Potentially Habitable Planet with a Mass Similar to Earth.”

Additional Source: Technology Review Blog

Sand Storm

Spring Sandstorm Scours China
Spring Sandstorm Scours China

[/caption]

A sand storm, also known as a dust storm is an atmospheric event when strong winds lift dust from one region and carry it into another. They’re most common in arid, desert regions where there’s little vegetation to hold the topsoil and sand down. Large sand storms can carry dust thousands of kilometers; dust that started in the Arabian desert can be dropped into the Pacific Ocean.

Sand storms get going when there’s a very dry region, without wet soil to hold the particles together. The smallest particles of sand can be pulled out of the ground by the wind, and held in suspension by the wind. It’s thought that static electricity in the storm can cause even more particles to pull out of the ground in addition to the wind effect. In some cases the dust is held low to the ground, but with the right atmospheric conditions, the sand can be carried more than 6 km high in the atmosphere.

Although sand storms are a natural event, it’s believed that poor farming techniques contribute to the problem. As the topsoil is depleted and erodes away by farming and grazing animals, it exposes the underlying sand and dust. This situation led to the huge dust storms of the Dust Bowl in the 1930s in the United States.

A dust storm can be quite a hazard if you get caught in one. The storms can spread over hundreds of kilometers, with driving winds that can be over 40 km/h. The sand can be thick enough to obscure visibility down to a very short distance. The dust can also be a danger to people with asthma and other respiratory illnesses.

Dust storms don’t just happen on Earth, they can also happen on Mars. In fact, dust storms can become so large on Mars they obscure the entire planet. When NASA’s Mariner 9 spacecraft arrived at Mars in 1971, there was a huge dust storm raging. Only the volcano Olympus Mons was visible above the haze of the dust storm. The most recent planet-wide dust storm occurred in 2007, posing a risk to the Mars Exploration Rovers. They rely on sunlight to power their solar panels, but the dust settling on their panels was reducing their power output.

We have written many articles about sand storms for Universe Today. Here’s an article about the black sand beaches, and here are some sandstorm pictures.

If you’d like more info on sandstorms, check out Visible Earth Homepage. And here’s a link to NASA’s Earth Observatory.

We’ve also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 51: Earth.

Transit

Transiting
NASA's Hinode X-ray telescope captured Mercury in transit against the Sun's corona in Nov. 2006. Similar views are possible in H-alpha light. Credit: NASA

[/caption]

Although the word “transit” can have many meanings, here on Universe Today, we’re talking about astronomical transits. This is where one object in space moves directly in front of another, partly obscuring it from view.

The most famous example of an astronomical transit is a solar eclipse. From our vantage point on Earth, the Moon appears to pass directly in front of the Sun, obscuring it, and darkening the sky. When seen from space, the Moon casts a shadow on the surface of the Earth; only people within that shadowed area actually see the transit.

In order to have a transit, you need to have a closer object, a more distant object, and then an observer. When all three objects are lined up in a straight line, you’ll get a transit. There can be transits of Mercury and Venus across the surface of the Sun, or a transit of Earth across the Sun, seen from Jupiter. We can also see the transit of moons across the surface of their planets. Jupiter often has moons transiting in front of it.

Astronomers use the transit technique to discover extrasolar planets orbiting other stars. When a planet passes in front of a star, it dims the light from the star slightly. And then the star brightens again as the planet moves away. By carefully measuring the brightness of the star, astronomers are able to detect if they have planets orbiting them.

Transits are also helpful for studying the atmospheres of objects in the Solar System. Astronomers discovered that Pluto has a tenuous atmosphere by studying how it dimmed the light from a more distant star. As Pluto began transiting in front of the star, its atmosphere partly obscured the star, changing the amount of light observed. Astronomers were then able to work out the chemicals in Pluto’s atmosphere.

The next transit of Mercury will occur in 2016, and the next transit of Venus is scheduled to occur in 2012.

We have written many articles about astronomical transit for Universe Today. Here’s an article about the transit of Mercury, and here’s an article about the transit of Venus.

If you’d like more info about Astronomical Transit, check out NASA Homepage, and here’s a link to NASA’s Solar System Simulator.

We’ve also recorded related episodes of Astronomy Cast about the Eclipse. Listen here, Episode 160: Eclipses.

Source: Wikipedia

What Are Tornadoes?

Tornado at Union City, Oklahoma Credit: NOAA Photo Library
Tornado at Union City, Oklahoma Credit: NOAA Photo Library

Also known as a twister, a tornado is a rotating column of air that can cause a tremendous amount of damage on the ground. Tornadoes can very in size from harmless dust devils to devastating twisters with wind speeds greater than 450 km/h.

A tornado looks like a swirling funnel of cloud that stretches from bottom of the clouds down to the ground. Depending on the power of the tornado, there might be a swirling cloud of debris down at the ground, where it’s tearing stuff up. Some tornadoes can look like thin white ropes that stretch from the sky down to the ground, and only destroy a thin patch of ground. Others can be very wide, as much as 4 km across, and leave a trail of destruction for hundreds of kilometers.

Tornadoes appear out of special thunderstorms known as supercells. They contain a region of organized rotation in the atmosphere a few kilometers across. Rainfall within the storm can drag down an area of this rotating atmosphere, to bring it closer to the ground. As it approaches the ground, conservation of momentum causes the wind speed to increase until it’s rotating quickly – this is when tornadoes cause the most damage. After a while the tornado’s source of warm air is choked off, and it dissipates.

When a tornado forms over water, it’s called a waterspout. These can be quite common in the Florida Keys and the northern Adriatic Sea. Most are harmless, like dust devils, but powerful waterspouts can be driven by thunderstorms and be quite dangerous.

Scientists have several scales for measuring the strength and speed of tornadoes. The most well known is the Fujita scale, which ranks tornadoes by the amount of damage they do. A F0 tornado damages trees, but that’s about it, while the most powerful F5 tornado can tear buildings off their foundations. Another scale is known as the TORRO scale, which ranges from T0 to T11. In the United States, 80% of tornadoes are F0, and only 1% are the more violent F4 or F5 twisters.

Although they can form anywhere in the world, tornadoes are mostly found in North America, in a region called Tornado Alley. The United States has the most tornadoes of any country in the world; 4 times as many as the entire continent of Europe. The country gets about 1,200 tornadoes a year.

We have written many articles about the tornado for Universe Today. Here’s an article about the biggest tornado, and here’s an article about how tornadoes are formed.

If you’d like more info on tornadoes, check out the National Oceanic & Atmospheric Administration (NOAA) Homepage. And here’s a link to NASA’s Earth Observatory.

We’ve also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 51: Earth.

Terminator

Geological Period

[/caption]

No, this isn’t a movie about robots. The terminator is the line that separates day from night on an object lit by a star. You can see evidence of this terminator when you look at the Moon. When we see the Moon, half in light and half in darkness, we’re seeing the terminator line going right down the middle of the Moon.

From our perspective here on Earth, we see the Sun rise from the East, go through the sky and then set again in the West. But if you could see the Earth from space, you would see half the planet is always illuminated, and half the planet is always in shadow. Since the Earth is rotating, we can watch different parts of the planet illuminated, and other parts darkened. The people on the surface of the planet are experiencing the Sun moving through the sky, but really it’s them who are doing the moving.

The location of the terminator depends on the axial tilt of the object. Since the Earth is tilted by 23.5° away from the Sun’s axis, the position of the terminator changes depending on the season. During summer in the northern horizon, the Earth’s north pole never goes into shadow, so the terminator never crosses the pole. And then in winter in the northern horizon, it never comes out of shadow.

If you could orbit the Earth, just above the equator, you would see the terminator line speeding away at approximately 1,600 km/h (1000 miles per hour). Only the fastest supersonic aircraft can match the terminator’s speed. But as you get closer to the poles, the terminator moves more slowly. Eventually at the poles, you can walk faster than the speed of the terminator.

When you see a terminator from afar, it can tell you a lot about a planet or moon. For example, the Earth’s terminator is fuzzy. This means that our planet has a thick atmosphere that scatters the light from the Sun. The Moon, on the other hand, is airless, so its terminator is a crisp line. When you’re standing on the surface of the Moon, it’s either bright or dark, not the in-between twilight that we experience here on Earth.

We have written many articles about the terminator for Universe Today. Here’s an article about why the Sun rises in the East and sets in the West, and here are some Earthrise photos.

If you’d like more info on Earth, check out NASA’s Solar System Exploration Guide on Earth. And here’s a link to NASA’s Earth Observatory.

We’ve also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 51: Earth.

Reference:
NASA Earth Observatory