The Other End of the Planetary Scale

A comparison of the size of Jupiter, a brown dwarf, a small star and the Sun (Gemini Observatory/Artwork by Jon Lomberg)

[/caption]

The definition of a “planet” is one that has seen a great deal of contention. The ad-hoc redefinition has caused much grief for lovers of the demoted Pluto. Yet little attention is paid to the other end of the planetary scale, namely, where the cutoff between a star and a planet lies. The general consensus is that an object capable of supporting deuterium (a form of hydrogen that has a neutron in the nucleus and can undergo fusion at lower temperatures) fusion, is a brown dwarf while, anything below that is a planet. This limit has been estimated to be around 13 Jupiter masses, but while this line in the sand may seem clear initially, a new paper explores the difficulty in pinning down this discriminating factor. For many years, brown dwarfs were mythical creatures. Their low temperatures, even while undergoing deuterium fusion, made them difficult to detect. While many candidates were proposed as brown dwarfs, all failed the discriminating test of having lithium present in their spectrum (which is destroyed by the temperatures of traditional hydrogen fusion). This changed in 1995 when the first object of suitable mass was discovered when the 670.8 nm lithium line was discovered in a star of suitable mass.

Since then, the number of identified brown dwarfs has increased significantly and astronomers have discovered that the lower mass range of purported brown dwarfs seems to overlap with that of massive planets. This includes objects such as CoRoT-3b, a brown dwarf with approximately 22 Jovian masses, which exists in the terminological limbo.

The paper, led by David Speigel of Princeton, investigated a wide range of initial conditions for objects near the deuterium burning limit. Among the variables included, the team considered the initial fraction of helium, deuterium, and “metals” (everything higher than helium on the periodic table). Their simulations revealed that just how much of the deuterium burned, and how fast, was highly dependent on the starting conditions. Objects starting with higher helium concentration required less mass to burn a given amount of deuterium. Similarly, the higher the initial deuterium fraction, the more readily it fused. The differences in required mass were not subtle either. They varied by as much as two Jovian masses, extending as low as a mere 11 times the mass of Jupiter, well below the generally accepted limit.

The authors suggest that because of the inherent confusion in the mass limits, that such a definition may not be the “most useful delineation between planets and brown dwarfs.” As such, they recommend astronomers take extra care in their classifications and realize that a new definition may be necessary. One possible definition could involve considerations of the formation history of objects in the questionable mass range; Objects that formed in disks, around other stars would be considered planets, where objects that formed from gravitational collapse independently of the object they orbit, would be considered  brown dwarfs. In the mean time, objects such as CoRoT-3b, will continue to have their taxonomic categorization debated.

Extrasolar Volcanoes May Soon be Detectable

[/caption]

We’ve all seen pictures of erupting terrestrial volcanoes from space, and even eruptions on Jupiter’s moon Io in the outer solar system, but would it be possible to detect an erupting volcano on an exoplanet? Astronomers say the answer is yes! (with a few caveats)

It’s going to be decades before telescopes will be able to resolve even the crudest surface features of rocky extrasolar planets, so don’t hold your breath for stunning photos of alien volcanoes outside our solar system. But astronomers have already been able to use spectroscopy to detect the composition of exoplanet atmospheres, and a group of theorists at the Harvard-Smithsonian Center for Astrophysics think a similar technique could detect the atmospheric signature of exo-eruptions.

By collecting spectra right before and right after the planet goes behind its star, astronomers can subtract out the star’s spectrum and isolate the signal from the planet’s atmosphere. Once this is done, they can look for evidence of molecules common in volcanic eruptions. Models suggest that sulfur dioxide is the best candidate for detection because volcanoes produce it in huge quantities and it lasts in a planet’s atmosphere for a long time.

Still, it won’t be easy.

“You would need something truly earthshaking, an eruption that dumped a lot of gases into the atmosphere,” said Smithsonian astronomer Lisa Kaltenegger. “Using the James Webb Space Telescope, we could spot an eruption 10 to 100 times the size of Pinatubo for the closest stars,” she added.

To be detected, exoplanet eruptions would have to be 10 to 100 times larger than the 1991 eruption of Mt. Pinatubo shown here. Image source: USGS

In 1991 Mount Pinatubo in the Philippines belched 17 million tons of sulfur dioxide into the stratosphere. Volcanic eruptions are ranked using the Volcanic Explosivity Index (VEI). Pinatubo ranked ‘colossal’ (VEI of 6) and the largest eruption in recorded history was the ‘super-colossal’ Tambora event in 1815. With a VEI of 7 it was about 10 times as large as Pinatubo. Even larger eruptions (more than 100 times larger than Pinatubo) on Earth are not unheard of: geologic evidence suggests that there have been 47 such eruptions in the past 36 million years, including the eruption of the Yellowstone caldera about 600,000 years ago.

The best candidates for detecting extrasolar volcanoes are super-earths orbiting nearby, dim stars, but the Kaltenegger and her colleagues found that volcanic gases on any earth-like planet up to 30 light years away might be detectable. Now they just have to wait until the James Webb Space Telescope is launched 2014 to test their prediction.

Aesthetics of Astronomy

This Hubble image reveals the gigantic Pinwheel Galaxy (M101), one of the best known examples of "grand design spirals," and its supergiant star-forming regions in unprecedented detail. Astronomers have searched galaxies like this in a hunt for the progenitors of Type Ia supernovae, but their search has turned up mostly empty-handed. Credit: NASA/ESA
This Hubble image reveals the gigantic Pinwheel Galaxy (M101), one of the best known examples of "grand design spirals". Credit: NASA/ESA

[/caption]

When I tell people I majored in astronomy, the general reaction is one of shock and awe. Although people don’t realize just how much physics it is (which scares them even more when they found out), they’re still impressed that anyone would choose to major in a physical science. Quite often, I’m asked the question, “Why did you choose that major?”

Only somewhat jokingly, I reply, “Because it’s pretty.” For what reasons would we explore something if we did not find some sort of beauty in it? This answer also tends to steer potential follow up questions to topics of images they’ve seen and away from topics from half-heard stories about black holes from sci-fi movies.

The topic of aesthetics in astronomy is one I’ve used here for my own devices, but a new study explores how we view astronomical images and what sorts of information people, both expert and amateur, take from them.

The study was conducted by a group formed in 2008 known as The Aesthetics and Astronomy Group. It is comprised of astrophysicists, astronomy image development professionals, educators, and specialists in the aesthetic and cognitive perception of images. The group asked to questions to guide their study:

  1. How much do variations in presentation of color, explanatory text, and illustrative scales affect comprehension of, aesthetic attractiveness, and time spent looking at deep space imagery?
  2. How do novices differ from experts in terms of how they look at astronomical images?

Data to answer this question was taken from two groups; The first was an online survey taken by volunteers from solicitations on various astronomy websites and included 8866 respondents. The second group was comprised of four focus groups held at the Harvard-Smithsonian Center for Astrophysics.

To analyze how viewers viewed color, the web study contained two pictures of the elliptical galaxy NGC 4696. The images were identical except for the colors chosen to represent different temperatures. In one image, red was chosen to represent hot regions and blue for cold regions. In the other version, the color scheme was reversed. A slight majority (53.3% to 46.7%) responded saying they preferred the version in which blue was assigned to be the hotter color. When asked which image they thought was the “hotter” image, 71.5% responded that the red image was hotter. Since astronomical images are often assigned with blue as the hotter color (since hotter objects emit shorter wavelength light which is towards the blue end of the visible spectrum), this suggests that the public’s perception of such images is likely reversed.

A second image for the web group divided the participants into 4 groups in which an image of a supernova remnant was shown with or without foreground stars and with or without a descriptive caption. When asked to rate the attractiveness, participants rated the one with text slightly higher (7.96 to 7.60 on a 10 point scale). Not surprisingly, those that viewed the versions of the image with captions were more likely to be able to correctly identify the object in the image. Additionally, the version of the image with stars was also more often identified correctly, even without captions, suggesting that the appearance of stars provides important context. Another question for this image also asked the size in comparison to the Earth, Solar System, and Galaxy. Although the caption gave the scale of the SNR in lightyears, the portion that viewed the caption did not fare better when asked to identify the size revealing such information is beyond the limit of usefulness.

The next portion showed an image of the Whirlpool galaxy, M51 and contained either, no text, a standard blurb, a narrative blurb, or a sectionized caption with questions as headers. Taking into consideration the time spent reading the captions, the team found that those with text spent more time viewing the image suggesting that accompanying text encourages viewers to take a second look at the image itself. The version with a narrative caption prompted the most extra time.

Another set of images explored the use of scales by superimposing circles representing the Earth, a circle of 300 miles, both, or neither onto an image of spicules on the Sun’s surface, with or without text. Predictably, those with scales and text were viewed longer and the image with both scales was viewed the longest and had the best responses on a true/false quiz over the information given by the image.

When comparing self-identified experts to novices, the study found that both viewed uncaptioned images for similar lengths of time, but for images with text, novices spent an additional 15 seconds reviewing the image when compared to experts. Differences between styles of presenting text (short blurb, narrative, or question headed), novices preferred the ones in which topics were introduced with questions, whereas experts rated all similarly which suggested they don’t care how the information is given, so long as it’s present.

The focus groups were given similar images, but were prompted for free responses in discussions.

<

p style=”padding-left: 30px;”>[T]he non-professionals wanted to know what the colors represented, how the images were made, whether the images were composites from different satellites, and what various areas of the images were. They wanted to know if M101 could be seen with a home telescope, binoculars, or the naked eye.

Additionally, they were also interested in historical context and insights from what professional astronomers found interesting about the images.

Professionals, on the other hand, responded with a general pattern of “I want to know who made this image and what it was that they were trying to convey. I want to judge whether this image is doing a good job of telling me what it is they

wanted me to get out of this.” Eventually, they discussed the aesthetic nature of the images which reveals that “novices … work from aesthetics to science, and for astrophysicists … work from science to aesthetics.”

Overall, the study found an eager public audience that was eager to learn to view the images as not just pretty pictures, but scientific data. It suggested that a conversational tone that worked up to technical language worked best. These findings can be used to improve communication of scientific objectives in museums, astrophotography sections of observatories, and even in presentation of astronomical images and personal conversation.

Win ‘Star Walk’ and ‘Solar Walk’ Astronomy Apps

I’ve had a couple of people excitedly show me the Star Walk astronomy app on their iPhones and ipads, and it really is great. You can hold your device up to the sky and it will show you a sky map of your exact position. Move your device around the sky, and it moves with you. It is a very high quality, dynamic and realistic stargazing guide, which — if you are a beginning or experienced astronomer — makes skywatching easy for everybody! There is also a “Solar Walk” app — which has very cool 3D images, so grab your 3D glasses to fully enjoy. See more about this app below.
Continue reading “Win ‘Star Walk’ and ‘Solar Walk’ Astronomy Apps”

Two New Asteroids to Pass Earth This Week

Orbits of 2010 RF12 and 2010 RX30

[/caption]

Two newly discovered asteroids will pass the Earth this week. The asteroids were discovered on September 5th of this year by Andrea Boattini using the 1.5 metre reflector at Mount Lemmon in Arizona as part of the Mount Lemmon Survey.

These two new asteroids have been given the designations of 2010 RF12 and 2010 RX30. Both are small bodies, which is why they were not discovered until mere days before they would pass the Earth. Estimates put the size of RF12 at 5 – 15 meters with a best estimate being around 8 meters (26 ft). The larger, RX30 is estimated to be 12 meters (39 ft), but the range of estimates go from 7 – 25.

Due to the large range of estimates on sizes, as well as poorly constrained relative velocities and an unknown composition, it would be difficult to predict the damage an impact from these bodies could cause. The majority of the mass for such small objects would burn up in the atmosphere with only small fragments surviving to the ground. For comparison, the estimated size of the object that caused the Tunguska event was estimated to be at least a few tens of meters in diameter at the point it exploded in the atmosphere some few miles up. Since the diameter helps to determine the volume, and thus the mass and kinetic energy, this factor increases the potential damage rapidly. However, although the bodies were just discovered this week, their orbits have already been well established for the near future and neither will collide with Earth. Both are rated at a 0 on the Torino scale (data from NASA’s NEO Program for RF12 and RX30 can be seen here and here respectively).

Although both objects will pass closer to the Earth than the moon, due to their small size, neither will be visible to the naked eye. 2010 RF12 is expected to pass the Earth at 21% of the Earth-moon distance and at maximum brightness, reach only 14th magnitude, which is just over 600 times too faint to see with the unaided eye. RX30 will approach at 66% of the Earth-moon distance and is expected to reach a similar peak magnitude. For those interested in tracking or photographing these objects, the Fawkes Telescope Project has created a page dedicated to these two objects, including best exposure times and filters for cameras that can be found here. Ephemeris for RF12 and RX30 can be found here and here respectively.

Although both of these asteroids were discovered on the same day and will be approaching near the same time, their orbits do not appear to be related. RF12’s orbit extends from 0.82 to 1.17 AU and it orbits the Sun once every year. Predictions have shown it only passes near the Earth once every one hundred years. Initially, RX30 was thought to be rotate extremely fast, but revised observations have shown that it takes at least 6 hours to rotate about its axis.

Spiral Galaxies Could Eat Dwarfs All Across the Universe

Stellar streams around the galaxy M 63. Credit: R. Jay Gabany (Blackbird Obs.) in collaboration with D. Martinez-Delgado (MPIA and IAC) et al.

[/caption]

For years, astronomers have seen evidence that – at least in our own local neighborhood — spiral galaxies are consuming smaller dwarf galaxies. As they are digested, these dwarf galaxies are severely distorted, forming structures like strange, looping tendrils and stellar streams that surround the cannibalistic spirals. But now, for the first time, a new survey has detected such tell-tale structures in galaxies more distant than our immediate galactic neighborhood, providing evidence that this galactic cannibalism might take place on a universal scale. Remarkably, these cutting-edge results were obtained with small, amateur-sized telescopes.


Since 1997, astronomers have seen evidence that spirals in our local group of galaxies are swallowing dwarfs. In fact, our own Milky Way is currently in the process of eating the Canis Major dwarf galaxy and the Sagittarius dwarf galaxy. But the Local group with its three spiral galaxies and numerous dwarfs is much too small a sample to see whether this digestive process is happening elsewhere in the Universe. But an international group of researchers led by David Martínez-Delgado from the Max Planck Institute for Astronomy recently completed a survey of spiral galaxies at distances of up to 50 million light-years from Earth, discovering the tell-tale signs of spirals eating dwarfs.

For their observations, the researchers used small telescopes with apertures between 10 and 50 cm, equipped with commercially available CCD cameras. The telescopes are located at two private observatories — one in the US and one in Australia. They are robotic telescopes that can be controlled remotely.

During the “eating” process, when a spiral galaxy is approached by a much smaller companion, such as a dwarf galaxy, the larger galaxy’s uneven gravitational pull severely distorts the smaller star system. Over the course of a few billions of years, tendril-like structures develop that can be detected by sensitive observation. In one typical outcome, the smaller galaxy is transformed into an elongated “tidal stream” consisting of stars that, over the course of additional billions of years, will join the galaxy’s regular stellar inventory through a process of complete assimilation. The study shows that major tidal streams with masses between 1 and 5 percent of the galaxy’s total mass are quite common in spiral galaxies.

One of the galaxies in the survey, NGC 4651, sports a remarkable umbrella-like structure. It is composed of tidal star streams, the remnants of a smaller satellite galaxy which NGC 4651 has attracted and torn apart. This galaxy's distance from Earth is 35 million light-years.Credit: R. Jay Gabany (Blackbird Obs.) in collaboration with D. Martínez-Delgado (MPIA and IAC) et al.

Detailed simulations depicting the evolution of galaxies predict both tidal streams and a number of other distinct features that indicate mergers, such as giant debris clouds or jet-like features emerging from galactic discs. Interestingly, all these various features are indeed seen in the new observations – impressive evidence that current models of galaxy evolution are indeed on the right track.

Smaller satellite galaxies caught by a spiral galaxy are distorted into elongated structures consisting of stars, which are known as tidal streams, as shown in this artist's impression. Credit: Jon Lomberg

The ultra-deep images obtained by Delgado and his colleagues open the door to a new round of systematic galactic interaction studies. Next, with a more complete survey that is currently in progress, the researchers intend to subject the current models to more quantitative tests, checking whether current simulations make the correct predictions for the relative frequency of the different morphological features.

While larger telescopes have the undeniable edge in detecting very distant, but comparatively bright star systems such as active galaxies, this survey provides some of the deepest insight yet when it comes to detecting ordinary galaxies that are similar to our own cosmic home, the Milky Way. The results attest to the power of systematic work that is possible even with smaller instruments.

For more images see this page from the Max Planck Institute for Astronomy

*Note: Originally the lead image image was credited incorrectly, and is actually a product of R. Jay Gabany, an astrophotographer whose work has been featured quite often here on Universe Today. See more of his amazing handiwork at his website, Cosmotography.

Source: Max Planck Institute for Astronomy

Hubble Spies an Amazing Cosmic Spiral

An Extraordinary Celestial Spiral. Credit: ESA/NASA & R. Sahai

[/caption]

The Hubble Space Telescope’s Advanced Camera for Surveys has captured a remarkable image of a spiral in space. No, not a spiral galaxy, (and not another Norway Spiral!) but the formation of an unusual pre-planetary nebula in one of the most perfect geometrical spirals ever seen. The nebula, called IRAS 23166+1655, is forming around the star LL Pegasi (also known as AFGL 3068) in the constellation of Pegasus.

The image shows what appears to be a thin spiral pattern of amazing precision winding around the star, which is itself hidden behind thick dust. Mark Morris from UCLA and an international team of astronomers say that material forming the spiral is moving outwards at a speed of about 50,000 km/hour and by combining this speed with the distance between layers, they calculate that the shells are each separated by about 800 years.

The spiral pattern suggests a regular periodic origin for the nebula’s shape, and astronomers believe that shape is forming because LL Pegasi is a binary star system. One star is losing material as it and the companion star are orbiting each other. The spacing between layers in the spiral is expected to directly reflect the orbital period of the binary, which is estimated to be also about 800 years.

A progression of quasi-concentric shells has been observed around a number of preplanetary nebulae, but this almost perfect spiral shape is unique.

Morris and his team say that the structure of the AFGL 3068 envelope raises the possibility that binary companions are responsible for quasi-concentric shells in most or all of the systems in which they have been observed, and the lack of symmetry in the shells seen elsewhere can perhaps be attributed to orbital eccentricity, to different projections of the orbital planes, and to unfavorable illumination geometries.

Additionally – and remarkably — this object may be illuminated by galactic light.

This image appears like something from the famous “Starry Night” painting by Vincent van Gogh, and reveals what can occur with stars that have masses about half that of the Sun up to about eight times that of the Sun. They do not explode as supernovae at the ends of their lives, but instead can create these striking and intricate features as their outer layers of gas are shed and drift into space. This object is just starting this process and the central star has yet to emerge from the cocoon of enveloping dust.

Abstract: A Binary-Induced Pinwheel Outflow from the Extreme Carbon Star, AFGL 3068

Source: ESA

Herschel Finds Water Around a Carbon Star

Herschel image of the carbon star CW Leonis. The arc visible to the left of the star is a bow showck, where the stellar wind encounters the interstellar medium. ESA/PACS/SPIRE/MESS Consortia

[/caption]

There’s something strange going on around the red giant star CW Leonis (a.k.a. IRC+10216). Deep within the star’s carbon-rich veil, astronomers have detected water vapor where no water should be.

CW Leonis is similar in mass to the sun, but much older and much larger. It is the nearest red giant to the sun, and in its death throes it has hidden itself in a sooty, expanding cloud of carbon-rich dust. This shroud makes CW Leonis almost invisible to the naked eye, but at some infrared wavelengths it is the brightest object in the sky.

Water was originally discovered around CW Leonis in 2001 when the Submillimeter Wave Astronomy Satellite (SWAS) found the signature of water in the chilly outer reaches of the star’s dusty envelope at a temperature of only 61 K. This water was assumed to be evidence for vaporizing comets and other icy objects around the expanding star. New observations with the SPIRE and PACS spectrometers on the Herschel Space Observatory reveal that there’s something much more surprising going on.

“Thanks to Herschel’s superb sensitivity and spectral resolution, we were able to identify more than 60 lines of water, corresponding to a whole series of energetic levels of the molecule,” explains Leen Decin from the University of Leuven and leader of the study. The newly-detected spectral lines indicate that the water vapor is not all in the cold outer envelope of the star. Some of it is much closer to the star, where temperatures reach 1000 K.

No icy fragments could exist that close to the star, so Decin and colleagues had to come up with a new explanation for the presence of the hot water vapor. Hydrogen is abundant in the envelope of gas and dust surrounding carbon stars like  CW Leonis, but the other building block of water, oxygen, is typically bound up in molecules like carbon monoxide (CO) and silicon monoxide (SiO). Ultraviolet light can split these molecules, releasing their stored oxygen, but red giant stars don’t make much UV light so it has to come from somewhere else.

An illustration of the chemical reactions caused by interstellar UV light interacting with molecules surrounding CW Leonis. ESA. Adapted from L. Decin et al. (2010)

The dusty envelopes around carbon stars are known to be clumpy, and that turns out to be the key to explaining the mysterious water vapor. The patchy structure of the shroud around CW Leonis lets UV light from interstellar space into the depths of the star’s envelope. “Well within the envelope, UV photons trigger a set of reactions that can produce the observed distribution of water, as well as other, very interesting molecules, such as ammonia (NH3),” says Decin. “This is the only mechanism that explains the full range of the water’s temperature.”

In the coming months, astronomers will test this hypothesis by using Herschel to search for evidence of water near other carbon stars.

Step On The Scales: Weighing Up Planet Earth…

Scientists at the European Southern Observatory have identified the closest looking solar system to our own. They located a sun-like star more than 100 light years distant with as many as seven different planets, including one that might be the smallest ever found outside the solar system.

“We have found what is most likely the system with the most planets yet discovered,” says Christophe Lovis, lead author of the paper reporting the result. “This remarkable discovery also highlights the fact that we are now entering a new era in exoplanet research: the study of complex planetary systems and not just of individual planets. Studies of planetary motions in the new system reveal complex gravitational interactions between the planets and give us insights into the long-term evolution of the system.”

Some of the planets identified are large but one is only 1.4 times the size of Earth. That’s getting tantalizingly close to finding what astronomers are calling the ‘Holy Grail’ of astronomy, locating a planet just like our own with a breathable atmosphere, moderate temperatures and orbital stability. Scientists have been spotting planets beyond our solar system for the past 15 years, and they’ve now cataloged some 450. They know there are many more out there. The newly found worlds are made essentially of rocks and ice with a solid core. The larger planets probably have a layer of hydrogen and helium gas like Uranus and Neptune and the sixth is possibly a Saturn-like planet.

“We also have good reasons to believe that two other planets are present,” says Lovis. One would be a Saturn-like planet (with a minimum mass of 65 Earth masses) orbiting in 2200 days. The other would be the least massive exoplanet ever discovered [2], with a mass of about 1.4 times that of the Earth. It is very close to its host star, at just 2 percent of the Earth–Sun distance. One “year” on this planet would last only 1.18 Earth-days.

“This object causes a wobble of its star of only about 3 km/hour — slower than walking speed — and this motion is very hard to measure,” says team member Damien Ségransan. If confirmed, this object would be another example of a hot rocky planet, similar to Corot-7b.

Since the Earth is suspended in space, it cannot be put on a scale and weighed to be compared to other planets. But scientists can estimate its total weight by, among other things, measuring its tug on orbiting satellites. We’ve used this method to weigh the Earth and it turns out to be a whopping 6.6 sextillion tons… that’s two 6s, followed by twenty zeros, or 6,600,000,000,000,000,000,000 tons! But Earth’s weight gain doesn’t stop there… it increases by 100,000 pounds each year from dust and meteoric material falling from the sky. How does this “weigh up” to planetary science?

“Clearly, the exploration of the low-mass planet population has now fully started,” says C. Lovis et al. “The HARPS search for southern extra-solar planets will become the main focus of the field in the coming years. It is expected that the characterization of planetary system architectures, taking into account all objects from gas giants to Earth-like planets, will greatly improve our understanding of their formation and evolution. It will also allow us to eventually put our Solar System into a broader context and determine how typical it is in the vastly diverse world of planetary systems. The characterization of a significant sample of low-mass objects, through their mean density and some basic atmospheric properties, is also at hand and will bring much desired insights into their composition and the physical processes at play during planet formation.”

Many thanks to Dave Reneke of Australasian Science Magazine for sharing and to Mission Green Globe and ESO for the images.

The Origin of Exoplanets

Artist's impression of the planet OGLE-TR-L9b. Credit: ESO/H. Zodet

[/caption]

We truly live in an amazing time for exoplanet research. It was only 18 years ago the first planet outside our solar system was discovered. Fifteen since the first confirmation of one around a main sequence star. Even more recently, direct images have begun to sprout up, as well as the first spectra of the atmospheres of such planets. So much data is becoming available, astronomers have even begun to be able to make inferences as to how these extra solar planets could have formed.

In general, there are two methods by which planets can form. The first is via coaccretion in which the star and the planet would form from gravitational collapse independently of one another, but in close enough proximity that their mutual gravity binds them together in orbit. The second, the method through which our solar system formed, is the disk method. In this, material from a thin disk around a proto-star collapses to form a planet. Each of these processes has a different set of parameters that may leave traces which could allow astronomers to uncover which method is dominant. A new paper from Helmut Abt of Kitt Peak National Observatory, looks at these characteristics and determines that, from our current sampling of exoplanets, our solar system may be an oddity.

The first parameter that distinguishes the two formation methods is that of eccentricity. To establish a baseline for comparison, Abt first plotted the distribution of eccentricities for 188 main-sequence binary stars and compared that to the same type of plot for the only known system to have formed via the disk method (our Solar System). This revealed that, while the majority of stars have orbits with low eccentricity, this percentage falls off slowly as the eccentricity increases. In our solar system, in which only one planet (Mercury) has an eccentricity greater than 0.2, the distribution falls off much more steeply. When Abt constructed the distribution for the 379 planets with known eccentricity, it was nearly identical to that for binary stars.

A similar plot was created for the semi major axis of binary stars and our solar system. Again, when this was plotted for the known extra solar planets the distribution was similar to that of binary star systems.

Abt also inspected the configuration of the systems. Star systems containing three stars generally contained a pair of stars in a tight binary orbit with a third in a much larger orbit. By comparing the ratios of such orbits, Abt quantified the orbital spacing. However, instead of simply comparing to the solar system, he considered the analogous situation of formation of stars around the central mass of the galaxy and built a similar distribution in this manner. In this case, the results were ambiguous; Both modes of formation produced similar results.

Lastly, Abt considered the amount of heavy elements in the more massive body. It is widely known that most extra-solar planets are found around metal-rich stars. While there’s no reason planets forming in a disk couldn’t be formed around high mass stars, having a metal-rich cloud from which to form stars and planets is a requirement for the coaccretion model because it tends to accelerate the collapse process, allowing giant planets to fully form before the cloud was dissipated as the star became active. Thus, the fact that the vast majority of extra-solar planets exist around metal-rich stars favors the coaccretion hypothesis.

Taken together, this provides four tests for formation models. In every case, current observations suggest that the majority of planets discovered thus far formed from coaccretion and not in a disc. However, Abt notes that this is most likely due to statistical biases imposed by the sensitivity limits of current instruments. As he notes, astronomers “do not yet have the radial velocity sensitivity to detect disk systems like the solar system, except for single large planets, like Jupiter at 5 AU.” As such, this view will likely change as new generations of instruments become available. Indeed, as instruments improve to the point that three dimensional mapping becomes available, and orbital inclinations can be directly observed, astronomers will be able to add another test to determine the modes of formation.

EDIT: Following some confusion and discussion in the comments, I wanted to add one further note. Keep in mind this is only the average of all systems currently known that looks like coaccreted systems. While there are undoubtedly some in there that did form from disks, their rarity in the current data makes them not stand out. Certainly, we know of at least one system that fits a strong test for the disk method. This recent discovery by Kepler, in which three planets have been observed transiting their host star demonstrates that all of these planets must lie in a disk which does not conform to expectations of independent condensation. As more systems like this are discovered, we expect that the distributions of the tests described above will become bimodal, having components that match each formation hypothesis.