Small Moon Makes Big Waves

A Cassini image of the moon Daphnis making waves in Saturn's rings. Credit: NASA/JPL/Space Science Institute

[/caption]

Saturn’s moon Daphnis is only 8 kilometers wide, but it has a fairly substantial effect on the A ring, making waves on the ring’s edge. According to Carolyn Porco on Twitter, this is the closest look yet at this mini, moving moon. Daphnis resides in the Keeler Gap, which is about 42 km wide, but the moon’s eccentric orbit causes its distance from Saturn to vary by almost 9 km, and its inclination causes it to move up and down by about 17 km. That may not sound like much, but within a small gap, this variability causes the waves seen in the edges of the gap. We’ve only known about Daphnis’ existence since 2005, one of the many discoveries made by the Cassini spacecraft, and this is the first image where Daphnis is more than just a little dot. Click on the image to get a closer look.

This image is hot off the presses, as it was taken on July 5, 2010, and sent to Earth just yesterday (July 6). See below for a great new look at Saturn’s ring.


New raw image of Saturn's rings. Credit: NASA/JPL/Space Science Institute

Click the image for a larger version, and prepare to be wowed!

Source: CICLOPS, with a hat tip to Stu Atkinson!

SETI Chile Interview

Working on the internet provides the opportunity to meet people from all around the world, and I’ve gotten acquainted with Lourdes Cahuich, an astronomy and science enthusiast and translator from Mexico and Tiare Rivera from Chile, who is the editor of the SETI Chile website. They regularly translate Universe Today articles (and articles and podcasts from many other English-language sites) and post them on their website in Spanish, making space and astronomy news more accessible to more of the world. They both are working on a series of interviews with people involved in space and astronomy outreach, and I am honored that Lourdes wanted to interview me! You can read the interview here in English, or if you prefer, here en Español. I reveal all about how and why I started writing, and how I ended up at Universe Today.

Above is the English version of SETI.CL’s promo video.

Hayabusa Sample Return Canister Opened, Contains Material

Hayabusa's sample return canister was opened to reveal a small particle inside. Credit: JAXA

[/caption]

The sample return canister from the Hayabusa spacecraft has been opened, and does contain a small amount of dust particles, according to the JAXA website. This is very encouraging news! However, it is not yet known if the dust is from the asteroid Itokawa, where Hayabusa briefly touched down, or if it could be from Earth — left in the container from before launch, or it possibly could have made its way in there during the landing/post landing handling. “Material on the planet or asteroid or particulate matter is at this stage is unknown, we will consider in detail,” is the Google translate version of the JAXA press release. According to Emily Lakdawalla at the Planetary Society, the dust grains are extremely small, about 0.01-millimeter in size, and there are about a dozen of them inside the container. This image was taken on June 28, 2010, and below is a magnified view of one of the particles.

Magnified view of a dust particle in the Hayabusa canister. Credit: JAXA

This magnified view was taken on June 29, and shows a magnified view of one very small particle being picked up by a quartz manipulator, which appears as a stripe on the image.
It likely will take several weeks to confirm whether the particles are from the asteroid, but if so, would be the first-ever asteroid sample return.

Below is an image of Earth that Hayabusa took as it approached the home planet.

Earth seen by the returning Hayabusa. Credit: JAXA

Sources: JAXA, The Planetary Society, BBC

All-Sky Stunner from Planck

A multi-color all-sky image of the microwave sky. Credit: ESA, HFI and LFI consortia

[/caption]

After a year of observations, the Planck observatory team released an all-sky microwave image, and what a gorgeous image it is! The Planck satellite looks at the entire sky in the microwave region of the electromagnetic spectrum, (30 to 857 GHz) with the main goal of tracking down the echoes of the Big Bang, the Cosmic Microwave Background (CMB.) This new image reveals the cosmic signal is literally hidden behind a fog of foreground emission, arising mostly from the interstellar medium (ISM), the diffuse mixture of gas and dust filling our Galaxy.

At the top and bottom of the image in the red and yellow marbled region is where the CMB is visible.

“By contrast, a good part of the sky is dominated by the Milky Way contribution, shining strongly along the Galactic Plane but also extending well above and below it, albeit at a very much lower intensity,” said Jan Tauber, Planck Project Scientist.

To produce this image, the Planck team combined data from the full frequency range of Planck. The main disc of our Galaxy runs across the center of the image, with streamers of cold dust reaching above and below the Milky Way. This galactic web is where new stars are being formed, and Planck has found many locations where individual stars are edging toward birth or just beginning their cycle of development.

To get your bearings of where everything is locatated, here is an annotated version.

Annotated version of the Planck all-sky image. Credit: ESA, HFI and LFI consortia.

“Planck has ‘painted’ us its first spectacular picture of the Universe,” said Dr. David Parker, Director of Space Science and Exploration for the UKSpace Agency. “This single image captures both our own cosmic backyard — the Milky Way galaxy that we live in — but also the subtle imprint of the Big Bang from which the whole Universe emerged. We’re proud to be supporting this great new discovery machine and look forward to our scientists unraveling the deeper meaning behind the beauty of this first image.”

And this is just the beginning of beautiful things from Planck!

Here’s another annotated version:

Planck all-sky annotated image. Credit: ESA, HFI and LFI consortia.

(Thanks to IVAN3MAN for suggesting to add this image.)

For more info see this ESA webpage, and the Planck website.

New Satellite for Monitoring Space Debris To Launch

The Air Force Space Based Space Surveillance (SBSS) system. Credit: Boeing

[/caption]

The U.S. Air Force will launch the first-ever satellite dedicated solely to tracking the positions of other satellites and the thousands of pieces of space debris in Earth orbit. The $500 million Space-Based Space Surveillance satellite, scheduled for a July 8 launch from Vandenberg Air Force Base, in California, will continuously monitor the “traffic” around the Earth, providing an unobstructed view day or night. Currently, the ground-based radar and optical telescopes used to track satellites and space junk can only be used on clear nights, and not all the observatories are powerful enough to detect objects in high or geosynchronous orbits.

This is the first satellite in the SBSS System that will eventually lead to a constellation of satellites to detect and track orbiting space objects, according to Boeing, the prime contractor for this first “Pathfinder” satellite. While the Air Force is the primary user of the SBSS satellites, the US Department of Defense will also use data from the eventual satellite system to support military operations, and NASA can use the information to calculate orbital debris collision-avoidance measures for the International Space Station and Space Shuttle missions.

The Air Force estimates there are about 1,000 functioning satellites and about 20,000 pieces of debris orbiting Earth.

The new satellite will be in orbit 627 kilometers (390 miles) above the Earth, and has an optical camera on a swivel mount, so the camera’s view can be changed without burning fuel to move the satellite, and will concentrate on satellites and debris in deep space. The information from the satellite will be sent to a command center at Schriever Air Force Base in Colorado.

The Air Force space surveillance network previously had partial use of a satellite called the Midcourse Space Experiment, which was designed to track missiles but could also monitor objects in orbit. It’s no longer functioning.

Right now, the Air Force can detect objects as small as 10 centimeters across, or about 4 inches, and they have not released information on the the capabilities of the new satellite.

The Secure World Foundation says there could be millions of pieces of debris in total around the Earth. Debris at altitudes above several hundred kilometers can stay in orbit for decades or even centuries, and those about 1,500 kilometers will remain in orbit for thousands of years. Even very small particles of space debris can have a devastating effect on anything they hit because of their high relative impact velocities.

Chart of orbital debris. Source: NASA Orbital Debris Quarterly News, April 2009,

This chart displays a summary of all objects in Earth orbit officially cataloged by the U.S. Space Surveillance Network. “Fragmentation Debris” includes satellite breakup debris and anomalous event debris, while “Mission?related Debris” includes all objects dispensed, separated, or released as part of the planned mission. Note the dramatic increase in fragmentation debris caused by the Chinese ASAT test conducted in January 2007. Another smaller increase is noted following the 2009 collision between an Iridum communications satellite and a non-functioning Russian satellite.

It is hoped the new SBSS satellite will increase the capabilities to help avoid future collisions.

Sources: Boeing, Secure World Foundation, AP

Astronomy Without A Telescope – Animal Astronomy

Avian astronomers at work. Credit: abc.net.au.

[/caption]

In the 1950s, the Sauer research team locked some birds in Olbers planetarium and started messing with them. First they projected a northern hemisphere autumn sky and the birds flew ‘south’ – away from Polaris and keeping Betelgeuse to the left (‘east’). Then they projected a spring night sky and the birds flew ‘north’ towards Polaris with Betelgeuse again to their left, albeit this time in the ‘west’. The position of Betelgeuse appeared to be significant, perhaps because it’s one of the brighter stars in the northern hemisphere and just to the north of the celestial equator.

Later experiments with Indigo Buntings demonstrated that birds raised with no experience of the night sky didn’t have a clue what to do when released into a planetarium. However, birds that were raised with the night sky visible would fly ‘south’ away from the sky’s axis of rotation, whether that was Polaris or an artificial arbitrary axis created within the planetarium.

From this work, researchers concluded that it was unlikely that birds were born with a genetic star map, but instead learned to orientate themselves with respect to the rotating night sky by reference to other directional cues – like the position of the Sun and the Earth’s magnetic field.

It’s thought that many migratory birds closely monitor sunrise and sunset – allegedly when you see a line of birds on a power line, most will be facing east in the morning and west in the evening, recalibrating their internal compasses. Checking for a north-south plane of polarized light at sunrise and sunset may help them determine their latitude – by indicating how far off due east or west the Sun is when it’s at the horizon.

Pigeons have well developed magnetoreception that they can use as an alternative to solar navigation. For example, they can ‘home’ even with a heavily overcast sky – but get them to wear a little magnetized helmet that screws up their perception of the Earth’s magnetic field and they get lost. On the other hand, if it’s a clear day with the Sun visible they can find home just fine – even with a little magnetized helmet on.

As well as the birds – bacteria, bees, termites, lobsters, salamanders, salmon, turtles, mole rats and bats have all been shown to possess magnetoreception.

Magnetotactic bacteria manufacture their own magnetite crystals – building chains of crystals that mimic a compass needle. The bacteria appear to use their magnetite crystals for the simple purpose of determining which way is down – since a straight line to magnetic north will pass through the Earth’s surface.

Magnetospirillum with a line of synthesized magnetite crystals visible. Credit: www.microbiologybytes.com

It’s yet to be determined how a complex nervous system might interface with magnetite or whether magnetite is the primary mechanism in larger multicellular animals. Magnetite crystals have been isolated from bees and termites – and are apparently synthesized by them. However, in larger animals it’s harder to tell – as these crystals are tiny and difficult to find or visualize in vivo. An alternate magnetoreception mechanism based on photochemicals in the retina has been proposed for migratory birds – although a role for magnetite, particularly in pigeons which have relatively large concentrations of it in their beaks, can’t be ruled out.

Humans have traces of magnetite in their brains – although the court is still out on whether this gives us any capacity for direction finding by magnetoreception. Some research suggests a few individuals may have some very minor ability – but not enough for anyone to consider preferring this to their GPS.

Weekend SkyWatcher’s Forecast: July 2-4, 2010

Greetings, fellow SkyWatchers! Hopefully the rains have passed in your area and you’re ready for some dark skies and a double-dip… Double stars that is! This weekend we’ll take a look at some of the most colorful and interesting binary stars of the summer. Need more? Then hang tight as we take a look at one of the most concentrated globular clusters aroumd! Whenever you’re ready, I’ll see you in the backyard…

July 2, 2010 – This date marks the 1820 passing of British optician Peter Dollond, inventor of the triple achromatic lens. Dollond’s improvements to the refracting telescope included placing convex lenses of crown glass on either side of a biconcave flint glass lens to make the achromatic triplet lens we know today!

Now turn binoculars or telescopes toward magnitude 2.7 Alpha Librae, the second brightest star in the celestial ‘‘Scales.’’ Its proper name is Zuben El Genubi, and, as Star Wars as that sounds, the ‘‘Southern Claw’’ is actually quite close to home at a distance of only 65 light-years. No matter what size optics you are using, you’ll easily see Alpha’s widely spaced 5th magnitude companion, which shares the same proper motion. Alpha itself is a spectroscopic binary, as was verified during an occultation event, and its inseparable companion is only a half-magnitude dimmer according to the light curves. Enjoy this easy pair tonight!

July 3, 2010 – Tonight let’s go deep south and have look at an area that once held something almost half a bright as tonight’s later Moon and over four times brighter than Venus. Only one thing could light up the skies like that—a supernova.

According to historical records from Europe, China, Egypt, Arabia, and Japan, 1,003 years ago the very first supernova event was noted. Appearing in the constellation of Lupus, it was at first believed to be a comet by the Egyptians, yet the Arabs saw it as an illuminating ‘‘star.’’


Located less than a finger-width northeast of Beta Lupi (RA 15 02 48 Dec –41 54 42) and half a degree east of Kappa Centaurus, no visible trace is left of a once-grand event that spanned 5 months of observation, beginning in May and lasting until it dropped below the horizon in September 1006. It is believed that most of the star was converted to energy, and very little mass remains. In the area, a 17th magnitude star that shows a tiny gas ring and radio source 1459-41 remains our best candidate for pinpointing this incredible event.

Why you’re at it, try a challenging double star—Upsilon Librae (RA 15 37 01 Dec –28 08 06). This beautiful red star is right at the limit for a small telescope, but quite worthy, as the pair is a widely disparate double. Look for the 11.5-magnitude companion to the south in a very nice field of stars!

July 4. 2010 – Tonight let’s have a look at 400-lightyear-distant Rasalgethi—Alpha Herculis (RA 17 14 38 Dec +14 23 25). Known as the ‘‘Head of the Kneeling One,’’ it’s an easily resolved double and is noted for its fine color contrast. At magnitude 3.5, the variable bright primary is one of the largest known stars, with a diameter four times the Earth–Sun distance. Rasalgethi’s photospheric temperature is so low (3,000 Kelvin) that it barely glows a warm reddish orange. Meanwhile, its 5.4-magnitude companion is a yellow giant with a temperature twice the primary. The two together make Rasalgethi A seem a deeper red, while Rasalgethi B takes on a lovely yellow-green hue.

Need some fireworks? Then check out a single small globular—M80 (RA 16 17 02 Dec –22 58 30). Located about 4 degrees northwest of Antares (about two finger-widths), this little globular cluster is a powerpunch. Located in a region heavily obscured by dark dust, M80 will shine like an unresolvable star to small binoculars, but reveal itself to be one of the most heavily concentrated globulars in the telescope. Discovered within days of each other by Messier and Mechain, respectively, in 1781, this intense Class I globular cluster is around 36,000 light-years distant.


In 1860, M80 became the first globular cluster that was known to host a nova. As stunned scientists watched, a centrally located star brightened to magnitude 7 over a period of days, becoming known as T Scorpii. The event then dimmed more rapidly than expected, making observers wonder exactly what they had seen. Since most globular clusters’ stars are all about the same age, the hypothesis was put forward that perhaps they had witnessed an actual collision of stellar members. Given that the cluster contains more than a million stars, the probability is that some 2,700 collisions of this type may have occurred during M80’s lifetime.

Have a super weekend!

This week’s awesome images are: Zuben El Genubi, Field of SN1006, Upsilon Librae, Rasalgethi and M80. All done by Palomar Observatory, courtesy of Caltech. We thank you so much!

Graphite ‘Whiskers’ Found in Apollo Moon Rocks

A. Light microscopy image of 72255,89. (B) Higher magnification image of transition from light to dark material in area shown in (A). (C) Raman spectra of three types of graphite analyzed in the sample. Credit: A. Steele, et al.

[/caption]

Long-held secrets continue to be unlocked from the Moon. Researchers taking a new look at a rock brought back by the Apollo 17 mission have discovered graphite in the form of tiny whiskers within the lunar sample. Just like the recent finding of water on the Moon, it was previously thought that any carbon present in the Apollo rocks came from terrestrial contamination from the way the lunar samples were collected, processed or stored. Andrew Steele, who led a team from the Carnegie Institution’s Geophysical Laboratory said the graphite could have come from carbonaceous impactors that struck both the Moon and Earth during the Late Heavy Bombardment, approximately 4.1 to 3.8 billion years ago, and if so, could provide a new and important source of information about this period in the solar system’s early history.

“We were really surprised at the discovery of graphite and graphite whiskers,” Steele said. “We were not expecting to see anything like this.”

The tiny graphite whiskers or needles were found in multiple spots within a specific area of lunar sample 722255 from the Mare Serenitatis impact crater in the Taurus-Littrow region, indicating that the minerals are in fact from the Moon and not just contamination.

Steele told Universe Today that he and his team don’t think the graphite originated on the Moon, but haven’t ruled it out completely.

“Our initial thought is that it is from the impactor, as we find it in a very fine grained impact melt breccias,” he said in an email. “I am currently looking in more pristine lunar rocks, i.e. lavas that do not contain evidence of meteorite material, for carbon phases.”

He added that the graphite may have come from the impactor itself, or it may have formed from the condensation of carbon-rich gas released during the impact.

The team used Raman imaging spectroscopy (CRIS) on a thin section of a freshly fractured surface of the rock. This identifies minerals and carbon species and their spatial relationship to each other beneath the surface of a sample. Steele said even though this rock has been on Earth since 1972, new techniques and instruments allowed for the new discovery.

“The analytical spot size is smaller and so we can look at smaller phases,” he said. “The sensitivity is better in the newer instruments and we can use spatially resolved methods that are much more sensitive than in the Apollo era.”

Impact breccias are made up of a jumble of smaller fragments that formed when the moon was struck by an asteroid or other object.

Other previous spectroscopy of the Moon’s surface has also found trace amounts of carbon, but it was thought to have come from the solar wind. However, Steele said he and his team have also ruled that out as the source.

“Several lines of reasoning confirm that the observed graphite and graphite whiskers (GW) are indigenous to the sample,” said the team in their paper. “In particular, all known GW synthesis methods involve deposition from a carbon-containing gas at relatively high temperatures ranging from 1273 to ~3900 K. Thus, the GWs identified in 72255 cannot have been synthesized as a result of sample handling and preparation. Moreover, they could not have been implanted by solar wind, because this carbon is typically too small to identify structurally at the magnifications used. The crystalline graphite grains detected here are likely either intact remnants of graphite and GWs from the Serentatis impactor, or they could have formed from condensation of carbon-rich gas released during impact.”

Steele said their findings indicate that impacts may be another process by which GWs can form in our solar system. Additionally, it appears carbonaceous material from impacts at the time of the Late Heavy Bombardment (LHB), and at a time when life may have been emerging on Earth, does survive on the Moon.

“The Solar System was chaotic with countless colliding objects 3.8 billion years ago,” Steele said in a press release. “Volatiles—compounds like water and elements like carbon were vaporized under that heat and shock. These materials were critical to the creation of life on Earth.”

While the impacts to Earth during that period have since been erased, craters on the Moon are still pristine, so the Moon potentially holds a record of the meteoritic carbon input to the Earth-Moon system, when life was just beginning to emerge on Earth.

The research is published in the July 2, 2010, issue of Science.

New Dates for Final Shuttle Launches

Discovery on the launchpad in March, 2010 for the STS-131 mission. Credit: Nancy Atkinson

[/caption]

If you are tentatively planning to attend one of the final shuttle launches, the uncertainty on launch dates just got a bit more certain; plus — an added benefit — we won’t see the end of the shuttle program until 2011.

NASA announced new target dates for the final two (and maybe three) shuttle missions. STS-133 is now aiming for November 1, 2010 at approximately 4:33 p.m. EDT for the final flight of shuttle Discovery, and for STS-134, February 26, 2011 at around 4:19 p.m. EST for shuttle Endeavour’s last launch. The potential bonus mission STS-135, would launch sometime in August 2011, if approved by Congress and NASA. The latest word on that was that NASA officials hope the decision would be made sometime this month.


The target dates were changed because the Alpha Magnetic Spectrometer instrument, heading for installation on the International Space Station won’t be ready by the time of the previously planned Sept. 16 launch for STS-133. With that launch moving to November, STS-134 cannot fly as planned, so the next available launch window — taking into account sun angles and other planned launches –is in February 2011.

These dates were rumored last week, but this is now the official word. However, of course, all target launch dates are subject to change.

The last external tanks for the STS-134 mission was recently completed at the Michoud Assembly Facility in New Orleans. There will be a final farewell ceremony at 9 a.m. CDT on Thursday, July 8, which will be shown on NASA TV. The event will commemorate 37 years of successful tank deliveries and the final external tank’s rollout for the last space shuttle flight. Coverage begins at 8:45 a.m.

The tank, designated ET-138, will travel on a wheeled transporter one mile to the Michoud barge dock. It will be accompanied by the Storyville Stompers, a traditional area brass band, and hundreds of handkerchief-waving employees in typical New Orleans fashion and spirit.

The tank will travel on a 900-mile sea journey to NASA’s Kennedy Space Center in Florida, where it will support shuttle Endeavour’s STS-134 launch. No word yet on how the oil spill may affect the journey.

Another tank that was damaged in Hurricane Katrina is being refurbished for the Launch-On-Need (LON) rescue mission STS-335, which if not needed and if it gets approval to fly as the actual final shuttle mission, (Atlantis) would change to STS-135.

Ken Kremer (who has written for Universe Today) has an article on SpaceRef about his tour of the Michoud Facility, which includes some great images.