James Cameron and ‘Avatar’ Help Promote NASA’s Exploration

Can’t get enough of “Avatar?” Now, you can see James Cameron and scenes from the 3-D epic on NASA TV and elsewhere, promoting the many contributions of NASA’s Earth science program that helps enable exploration of our home planet, as well as making the public more environmentally aware. NASA has 14 science satellites in orbit making cutting-edge global observations of the entire global system including the atmosphere, oceans, land surface, snow and ice.

“When NASA ventures into space, it remembers to keep a steady eye on home,” Cameron said. “Its fleet of Earth-orbiting satellites constantly reveals our whole planet: its remotest places, its mysteries and the powerful influence of humans.”

The movie “Avatar,” depicts the fictional planet of Pandora and is coming back to theaters this week. The story centers on a beautiful planet threatened by forces that want to exploit its natural resources.

Another Solar System Like our Own?

Artists impression shows the planetary system around the Sun-like star HD 10180. Credit: ESO/L. Calçada

There is another Sun-like star out there with an intriguing family of planets orbiting about and it could be the closest parallel to our own solar system that astronomers have found yet. European astronomers discovered a planetary system containing at least five planets, orbiting the star HD 10180, with evidence that two other planets may be present. If confirmed, one of those would have the lowest mass ever found.

“We have found what is most likely the system with the most planets yet discovered,” says Christophe Lovis, who led the team. “This remarkable discovery also highlights the fact that we are now entering a new era in exoplanet research: the study of complex planetary systems and not just of individual planets. Studies of planetary motions in the new system reveal complex gravitational interactions between the planets and give us insights into the long-term evolution of the system.”

To make this system even more intriguing, the team also found evidence that the distances of the planets from their star follow a regular pattern, as also seen in our Solar System. “This could be a signature of the formation process of these planetary systems,” said team member Michel Mayor.

HD 10180, is located 127 light years away in the southern constellation of Hydrus. The five confirmed planets are large, about the size of Neptune — between 13 and 25 Earth masses —with orbital periods ranging from between six and 600 days. The planets’ distances from the star ranges from 0.06 and 1.4 times the Earth–Sun distance.

A close-up of the sky around the star HD 10180. Credit: ESO and Digitized Sky Survey 2. Acknowledgment: Davide De Martin

“We also have good reasons to believe that two other planets are present,” said Lovis. One would be a Saturn-like planet (with a minimum mass of 65 Earth masses) orbiting in 2200 days. The other would be the least massive exoplanet ever discovered, with a mass of about 1.4 times that of the Earth. It is very close to its host star, at just 2 percent of the Earth–Sun distance. One “year” on this planet would last only 1.18 Earth-days.

“This object causes a wobble of its star of only about 3 km/hour— slower than walking speed — and this motion is very hard to measure,” says team member Damien Ségransan. If confirmed, this object would be another example of a hot rocky planet, similar to Corot-7b.

The team used the planet-finding HARPS spectrograph, attached to ESO’s 3.6-metre telescope at La Silla, Chile, and made observations of HD 10180 for six years.

The newly discovered system of planets around HD 10180 is unique in several respects. First of all, with at least five Neptune-like planets lying within a distance equivalent to the orbit of Mars, this system is more populated than our Solar System in its inner region, and has many more massive planets there. Furthermore, the system probably has no Jupiter-like gas giant. In addition, all the planets seem to have almost circular orbits.

With this new announcement, the total number of exoplanets found is 472.

The team’s paper was submitted to Astronomy and Astrophysics (“The HARPS search for southern extra-solar planets. XXVII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems” by C. Lovis et al.).

Source: ESO

Dragon Drop Tests and Heat1X-Tycho Brahe Set to Launch – SpacePod 2010.08.24

Home made rockets launched from home made submarines next to dragon wings floating in the ocean on your SpacePod for August 24th, 2010

Before we begin I just wanted to give a shout out to our new viewers on both Space.com and Universe Today. Hopefully you like what you’ll see and you’ll stick around for a while, check out some of our other videos and join us for our live weekly show all about space. For today though, lets start over the Pacific Ocean where SpaceX tested the Dragon’s parachute deployment system on August 12th, 2010.
Continue reading “Dragon Drop Tests and Heat1X-Tycho Brahe Set to Launch – SpacePod 2010.08.24”

Tight Binaries are ‘Death Stars’ for Planets

This plot of data from NASA's Spitzer Space Telescope tells astronomers that a dusty planetary smashup probably occurred around a pair of tight twin, or binary, stars. Image credit: NASA/JPL-Caltech/Harvard-Smithsonian CfA

[/caption]

Astronomers studying double star systems where the two stars are extremely close have found a pattern of destruction. While there probably isn’t a Star Wars-like Death Star roaming the Universe, tight binary systems might provide the equivalent of Darth Vader’s favorite weapon. “This is real-life science fiction,” said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics. “Our data tell us that planets in these systems might not be so lucky — collisions could be common. It’s theoretically possible that habitable planets could exist around these types of stars, so if there happened to be any life there, it could be doomed.”

Using the Spitzer Space Telescope, Drake and his team spotted a surprisingly large amount of dust around three mature, close-orbiting star pairs, that might be the aftermath of tremendous planetary collisions.

Drake is the principal investigator of the research, published in the Aug.19 issue of the Astrophysical Journal Letters.

The particular class of binary stars in the study are extremely close together. Named RS Canum Venaticorums, or RS CVns for short, they are separated by only about 3.2-million kilometers (two-million miles ), or two percent of the distance between Earth and our sun. The binaries orbit around each other every few days, with one face on each star perpetually locked and pointed toward the other.

These stars are familiarly like our own Sun – about the same size and probably about a billion to a few billion years old — roughly the age of our sun when life first evolved on Earth. But these stars spin much faster, and, as a result, have powerful magnetic fields, and giant, dark spots. The magnetic activity drives strong stellar winds — gale-force versions of the solar wind — that slow the stars down, pulling the twirling duos closer over time.

This is not a good scenario for planetary survival.

As the stars cozy up to each other, their gravitational influences change, and this could cause disturbances to planetary bodies orbiting around both stars. Comets and any planets that may exist in the systems would start jostling about and banging into each other, sometimes in powerful collisions. This includes planets that could theoretically be circling in the double stars’ habitable zone, a region where temperatures would allow liquid water to exist. Though no habitable planets have been discovered around any stars beyond our sun at this point in time, tight double-star systems are known to host planets; for example, one system not in the study, called HW Vir, has two gas-giant planets.

“These kinds of systems paint a picture of the late stages in the lives of planetary systems,” said Marc Kuchner, a co-author from NASA Goddard Space Flight Center. “And it’s a future that’s messy and violent.”

The temperatures around these systems measured by Spitzer are about the same as molten lava. The astronomers says that dust normally would have dissipated and blown away from the stars by this mature stage in their lives. They conclude that something — most likely planetary collisions — must therefore be kicking up the fresh dust. In addition, because dusty disks have now been found around four, older binary systems, the scientists know that the observations are not a fluke. Something chaotic is very likely going on.

If any life forms did exist in these star systems, and they could look up at the sky, they would have quite a view. Marco Matranga, lead author of the paper, also from Harvard-Smithsonian said, “The skies there would have two huge suns, like the ones above the planet Tatooine in ‘Star Wars.'”

The research was published in the Aug.19 issue of the Astrophysical Journal Letters.

Source: JPL

Astronomers Use Radio Signals for New Way to Weigh Planets

The Sun, Earth and Jupiter orbit a common barycentre. credit – D. Champion, MPIfR

[/caption]

Finding the mass of other planets is tricky, and usually is done by measuring the orbits of their moons or of spacecraft flying past them. But an international group of astronomers have found a new way to weigh planets, and they have now weighed entire planetary systems using radio signals from pulsars. “This is first time anyone has weighed entire planetary systems — planets with their moons and rings,” said team leader Dr. David Champion of the Max-Planck-Institut fuer Radioastronomie in Bonn, Germany. “And we’ve provided an independent check on previous results, which is great for planetary science.”

Champion says measuring the masses of planets in this new way could feed into data needed for future space missions. Because mass creates gravity, and a planet’s gravitational pull determines the orbit of anything that goes around it — both the size of the orbit and how long it takes to complete – it will help more accurate navigation for future missions.

The new method is based on corrections astronomers make to signals from pulsars, small spinning stars that deliver regular ‘blips’ of radio waves.

The Earth is traveling around the Sun, and this movement affects exactly when pulsar signals arrive here. To remove this effect, astronomers calculate when the pulses would have arrived at the Solar System’s center of mass, or barycenter, around which all the planets orbit. Because the arrangement of the planets around the Sun changes all the time, the barycenter moves around too. To work out its position, astronomers use both a table (called an ephemeris) of where all the planets are at a given time, and the values for their masses that have already been measured. If these figures are slightly wrong, and the position of the barycenter is slightly wrong, then a regular, repeating pattern of timing errors appears in the pulsar data.

“For instance, if the mass of Jupiter and its moons is wrong, we see a pattern of timing errors that repeats over 12 years, the time Jupiter takes to orbit the Sun,” said Dr. Dick Manchester of CSIRO Astronomy and Space Science. But if the mass of Jupiter and its moons is corrected, the timing errors disappear. This is the feedback process that the astronomers have used to determine the planets’ masses.

Data from a set of four pulsars have been used to weigh Mercury, Venus, Mars, Jupiter and Saturn with their moons and rings. Most of these data were recorded with CSIRO’s Parkes radio telescope in eastern Australia, with some contributed by the Arecibo telescope in Puerto Rico and the Effelsberg telescope in Germany. The masses were consistent with those measured by spacecraft. The mass of the Jovian system, .0009547921(2) times the mass of the Sun, is significantly more accurate than the mass determined from the Pioneer and Voyager spacecraft, and consistent with, but less accurate than, the value from the Galileo spacecraft.

The new measurement technique is sensitive to a mass difference of two hundred thousand million million tons — just 0.003% of the mass of the Earth, and one ten-millionth of Jupiter’s mass.

“In the short term, spacecraft will continue to make the most accurate measurements for individual planets, but the pulsar technique will be the best for planets not being visited by spacecraft, and for measuring the combined masses of planets and their moons,” said CSIRO’s Dr. George Hobbs, another member of the research team.

Repeating the measurements would improve the values even more. If astronomers observed a set of 20 pulsars over seven years they’d weigh Jupiter more accurately than spacecraft have. Doing the same for
Saturn would take 13 years.

“Astronomers need this accurate timing because they’re using pulsars to hunt for gravitational waves predicted by Einstein’s general theory of relativity”, said Professor Michael Kramer, head of the ‘Fundamental Physics in Radio Astronomy’ research group at the Max-Planck-Institut fuer Radioastronomie. “Finding these waves depends on spotting minute changes in the timing of pulsar signals, and so all other sources of timing error must be accounted for, including the traces of Solar System planets.”

Astronomers from Australia, Germany, the UK, Canada and the USA are involved in this project.

Paper: Measuring the Mass of Solar System Planets Using Pulsar Timing

Source: Max Planck

Our Solar System: Now 2 Million Years Older

Why Do Planets Orbit the Sun
The Solar System

Our solar system is beautiful and aging gracefully, but it might be even older than we originally thought, by as much as 2 million years. A group of scientists analyzed lead isotopes within a 1.49-kilo (3.2-pound) meteorite found in the Moroccan desert in 2004 and found evidence that suggests the mineral was formed 4.56 billion years ago, making the meteorite the oldest object ever found. This finding is between 300,000 and 1.9 million years older than previous estimates.

Marking the age of the Solar System has been defined as the time of formation of the first solid grains in the nebular disc surrounding the proto-Sun, and this has been done previously dating calcium–aluminium-rich inclusions in meteorites.

The team, led by Audrey Bouvier and Meenakshi Wadhwa of Arizona State University’s the Center for Meteorite Studies, looked at the extent to which uranium-238 and uranium-235 isotopes had decayed into their daughter isotopes lead-207 and lead-206.

Previous studies that dated the solar system looked at the Efremovka and Allende meteorites found in Kazakhstan in 1962 and Mexico in 1969, respectively.

While the timing may not seem like a big difference for something that is billions of years old, Bouvier said in New Scientist that it could make a difference when pinning down the conditions that led to the solar system’s formation, and those needed for other life-friendly planetary systems to form.

Their study was published by the journal Nature Geoscience.

Nature paper: Bouvier, A. & Wadhwa, M. Nature Geosci. advance online publication doi:10.1038/NGEO941 (2010).

Sources: New Scientist, PhysOrg

Amazing Image: Map of Magnetic Field Lines of the Sun

Magnetic field lines on the Sun, on August 20, 2010. Credit: NASA SDO/Lockheed Martin Space Systems Compan

[/caption]

The Sun’s corona is threaded with a complex network of magnetic fields, and this amazing new image from the Solar Dynamics Observatory shows the magnetic field lines associated with a coronal hole that is now turning to face Earth. This map is from data taken on August 20, 2010 by the Helioseismic and Magnetic Imager instrument (HMI). The magnetic field lines are color coded: white lines show fields that are closed, not releasing solar wind, and gold lines show open fields, letting solar wind escape. Understanding these magnetic fields is important because it is thought that solar storms and flares, which can affect us here on Earth, result from changes in the structure and connections of these fields.

Coronal holes are large regions in the corona that are darker, less dense and cooler than surrounding areas. The open structure of their magnetic field allows a constant flow of high-density plasma to stream out of the holes. There is an increase in the intensity of the solar wind effects on Earth when a coronal hole faces.

During a solar minimum, such as the one from which the Sun is just emerging, coronal holes are mainly found at the Sun’s polar regions, but they can be located anywhere on the sun during solar maximum. The fast-moving component of the solar wind is known to travel along open magnetic field lines that pass through coronal holes.

Scientists are finding out that much of the structure of the Sun’s corona is shaped by the magnetic field. Although it varies over time and from place to place on the Sun, the Sun’s magnetic field can be very strong. Inside sunspots, the magnetic field can be several thousand times the strength of the Earth’s magnetic field.

Learn more about magnetic field lines and how SDO’s HMI instrument will help us to better understand the Sun in this video from SDO:

More info: HMI webpage, SDO website

Sources: @Camilla_SDO Twitpic page, SDO Facebook, Solar Physics page from Montana University

Danish Amateurs Hope To Launch Suborbital Rocket Next Week

Copenhagen Suborbital's HEAT rocket and Tycho Brahe capsule ready to launch. Credit: Copenhagen Suborbital

[/caption]

It’s something like the movie “Astronaut Farmer,” but this is for real. And it’s in Danish. Copenhagen Suborbitals, headed by Kristian von Bengtson and Peter Madsen, hope to launch the world’s first amateur-built rocket for human space travel. As of this writing, the launch countdown clock on the Copenhagen Suborbitals’ website reads 7 days and 12 hours, which would put the launch on August 30 at about 1300 GMT. This upcoming flight will be an unmanned test flight, but if all goes well, Madsen hopes to be inside the single-passenger capsule named Tycho Brahe for a manned flight in the near future. They have a sea-launch site on the Baltic Sea near Bornholm, Denmark, and their HEAT 1-X rocket is ready to go.

Peter Madsen and Kristian von Bengtson. Credit: Copenhagen Suborbitals.

The team has been building their hybrid rocket since about 2004. Copenhagen Suborbitals is a non-profit endeavor, based entirely on sponsors and volunteers. Their mission: launch a human being into space. If they are successful, Denmark would become only the fourth nation to send a human into space. But this project is completely private – no national funds have been used. “We are working fulltime to develop a series of suborbital space vehicles – designed to pave the way for manned space flight on a micro size spacecraft,” said Madsen and von Bengtson on their website.

The Hybrid Exo Atmospheric Transporter or HEAT, is their booster rocket. It stands about 9 meters high, and it is a real scale rocket with a 640 mm diameter tube and uses liquid oxygen (LOX) for fuel. The HEAT booster will burn for about 60 seconds, providing 40kN of thrust, resulting in less than 3-g making the trip feasible for humans to endure in an upright position.

The flight trajectory for the HEAT rocket. Credit: Copenhagen Suborbitals.

The booster was successfully test-fired in February and May 2010. Copenhagen Suborbitals has also built three other rockets and successfully tested and flown them, including a small unmanned sounding rocket, named Hybrid Atmospheric Test Vehicle or HATV and smaller versions of the HEAT rocket.

“The mission has a 100% peaceful purpose and is not in any way involved in carrying explosive, nuclear, biological and chemical payloads,” said Madsen and von Bengtson.“We intend to share all our technical information as much as possible, within the laws of EU-export control.”

Previously, Madsen built the world’s largest home-made submarine, UC3 Nautilus. von Bengtson used to work for NASA. “This is the wildest thing I’ve made,” said Madsen in the Danish publication B.T. It is much wilder than the submarine.” Madsen added that he was tired of waiting for NASA, so decided to build a rocket himself.

The Tycho Brahe capsule is a single passenger capsule with a full view through a polymer plexiglas-dome so that the person can see and experience the entire ballistic ride. It has a pressurized volume providing support for one upright standing/half-sitting person. It will also have additional pressurized space, around and behind the astronaut, available for several other systems necessary for the flight procedure, and to support additional scientific and commercial project.

Peter Madsen inside the Tycho Brahe capsule. Credit: Copenhagen Suborbitals.

Copenhagen Suborbitals is taking donations, so check out their website. There’s also lots of images and videos available, on the site, too.

Since I am of one-half Danish heritage, I find this especially exciting. We’ll be following the progress of the Copenhagen Suborbitals’ historic flight. Stay tuned!

Jupiter Gets Smacked Yet Again?

It looks like once again, Jupiter has taken a hit! And once again an amateur astronomer spotted and captured the event. Masayuki Tachikawa was observing Jupiter on at 18:22 Universal Time on August 20th (early on August 21 in Japan) and his video camera captured a 1-second-long flash on the planet’s disk, along the northern edge of the gas giant’s North Equatorial Belt. The event was reported by astronomer Junichi Watanabe from the National Astronomical Observatory of Japan, on his blog.
Continue reading “Jupiter Gets Smacked Yet Again?”

‘Star Gazer’ Jack Horkheimer dies

The host of Public Television’s “Star Gazer” show, Jack Horkheimer, died on August 20, 2010. Originally called the ‘Star Hustler,’ the program ran for 30 years and Horkheimer’s craggy voice combined with his flamboyant, show-biz style made him a unique and internationally recognized pioneer in popularizing naked-eye astronomy. Horkheimer was 72 and died of a respiratory ailment, according to a spokesman for the Miami Museum of Science and Space Transit Planetarium, where Horkheimer was the executive director for over 35 years.
Continue reading “‘Star Gazer’ Jack Horkheimer dies”