So much in science is based on constraints. If scientists don’t understand something, they try to constrain it as much as possible so that more precise experiments can finally detect whatever the theorized phenomenon is. Dark matter is notoriously difficult in this regard, as it has evaded detection for over a century at this point, despite even more precise instruments trying to capture a glimpse of it. One of those instruments is the Super Cryogenic Dark Matter Search (SuperCDMS), run by the SLAC National Laboratory and located in northern Minnesota. To help further the cause, researchers looked at the data from the experiment while considering a few new possibilities, and while they didn’t find any evidence of dark matter, they helped tighten the constraints even more.
Continue reading “Dark Matter Experiment Fails to Turn Up the Mysterious Particle, but Narrows its Hiding Places”Watch the Mars Sample Return Mission Test the Rocket That’ll Leap off the Surface of Mars
The Mars Sample Return (MSR) has been going through a rough patch lately. We recently reported on reports coming out about Congress restricting its budget and potential cost overruns. However, like any good government program, progress continues toward the goal of bringing samples until there is a clear order to stop or the money drives up. That wasn’t the case back in March and April when NASA successfully tested two engines that will be used in the Mars Ascent Vehicle (MAV).
Continue reading “Watch the Mars Sample Return Mission Test the Rocket That’ll Leap off the Surface of Mars”Jupiter’s Moons Get the JWST Treatment
A pair of studies published in JGR: Planets and Science Advances discuss new findings from NASA’s James Webb Space Telescope (JWST) regarding Jupiter’s first and third Galilean Moons, Io and Ganymede, and more specifically, how the massive Jupiter is influencing activity on these two small worlds. For Io, whose mass is about 21 percent larger than Earth’s Moon, the researchers made the first discovery of sulfur monoxide (SO) gas on the volcanically active moon. For Ganymede, which is the largest moon in the solar system and boasts twice the mass of the Earth’s Moon, the researchers made the first discovery of hydrogen peroxide, which exists in Ganymede’s polar regions.
Continue reading “Jupiter’s Moons Get the JWST Treatment”Tether a Sunshade to an Asteroid to Slow Down Climate Change
It probably comes as no surprise to people suffering through drastic weather this year that our planet is heating up. Climate change is the culprit and researchers continue to look for ways to mitigate its effects. A scientist at the University of Hawai’i suggests a novel approach: create a giant solar shade in space to block enough sunlight to counter climate change.
Continue reading “Tether a Sunshade to an Asteroid to Slow Down Climate Change”What Does 60 Years of Silence Tell Us About the Search for Extraterrestrials?
Aliens are big in the news recently, fueled by congressional hearings about Unidentified Anomalous Phenomena (UAPs), formally known as UFOs. But while the idea of aliens visiting Earth may be exciting, the better bet is still the idea that aliens might exist on distant worlds. We already know potentially habitable planets are common and intelligent life has arisen on at least one world, so why not many? But after 60 years of searching for evidence of extraterrestrials “out there,” we’ve found nothing. So what does that tell us?
Continue reading “What Does 60 Years of Silence Tell Us About the Search for Extraterrestrials?”Did Powerful Asteroid Impacts Make Venus So Different From Earth?
Venus and Earth have several things in common. Both are terrestrial planets composed of silicate minerals and metals that are differentiated between a rocky mantle and crust and a metal core. Like Earth, Venus orbits within our Sun’s circumsolar habitable zone (HZ), though Venus skirts the inner edge of it. And according to a growing body of evidence, Venus has active volcanoes on its surface that contribute to atmospheric phenomena (like lightning). However, that’s where the similarities end, and some rather stark differences set in.
In addition to Venus’ hellish atmosphere, which is about 100 times as dense as Earth’s and hot enough to melt lead, Venus has a very “youthful” surface. Compared to other bodies in the Solar System (like Mercury, the Moon, and Mars), Venus’ surface retains little evidence of the many bolides impacts it experienced over billions of years. According to new research from the Southwest Research Institute (SwRI) and Yale University, this may result from bolide impacts that provided a high-energy, rejuvenating boost to the planet in its early years.
Continue reading “Did Powerful Asteroid Impacts Make Venus So Different From Earth?”Computer Algorithm Finds a “Potentially Hazardous” Asteroid
Humanity has been on an asteroid-finding spree as of late. Those close to Earth, known as Near Earth Objects (NEOs), have been particularly interesting for two reasons. One is they offer potentially lucrative economic opportunities with asteroid mining. The other is they are potentially devastating if they hit the Earth, so we’d like to find them with some advance warning. Those that fall into the latter category are known as potentially hazardous asteroids, or PHAs. Now, thanks to some ingenious programmers from the University of Washington, we have a new algorithm to detect them.
Continue reading “Computer Algorithm Finds a “Potentially Hazardous” Asteroid”Oops. NASA Accidentally Points Voyager 2’s Antenna Away from Earth, Temporarily Losing Contact
It’s every space mission’s nightmare: losing contact with the spacecraft. In the best case, you recover it right away. Worst case, you never hear from your hardware again. On July 21, controllers lost contact with Voyager 2, out in the depths of space. Now they’re waiting for a reset to catch Voyager 2’s next message when it “phones home”. (Update: on August 2, NASA announced via its Twitter account that it has received a “heartbeat” carrier signal from the spacecraft.)
Continue reading “Oops. NASA Accidentally Points Voyager 2’s Antenna Away from Earth, Temporarily Losing Contact”NASA is Working on Technology to 3D Print Circuits in Space
A collaboration of engineers from NASA and academia recently tested hybrid printed electronic circuits near the edge of space, also known as the Kármán line. The space-readiness test was demonstrated on the Suborbital Technology Experiment Carrier-9, or (SubTEC-9), sounding rocket mission, which was launched from NASA’s Wallops Flight Facility on April 25 and reached an altitude of approximately 174 kilometers (108 miles), which lasted only a few minutes before the rocket descended to the ground via parachute.
Continue reading “NASA is Working on Technology to 3D Print Circuits in Space”The PLATO Mission Could be the Most Successful Planet Hunter Ever
In 2026, the European Space Agency (ESA) will launch its next-generation exoplanet-hunting mission, the PLAnetary Transits and Oscillations of stars (PLATO). This mission will scan over 245,000 main-sequence F, G, and K-type (yellow-white, yellow, and orange) stars using the Transit Method to look for possible Earth-like planets orbiting Solar analogs. In keeping with the “low-hanging fruit” approach (aka. follow the water), these planets are considered strong candidates for habitability since they are most likely to have all the conditions that gave rise to life here on Earth.
Knowing how many planets PLATO will likely detect and how many will conform to Earth-like characteristics is essential to determining how and where it should dedicate its observation time. According to a new study that will be published shortly in the journal Astronomy & Astrophysics, the PLATO mission is likely to find tens of thousands of planets. Depending on several parameters, they further indicate that it could detect a minimum of 500 Earth-sized planets, about a dozen of which will have favorable orbits around G-type (Sun-like) stars.
Continue reading “The PLATO Mission Could be the Most Successful Planet Hunter Ever”