eROSITA Sees Changes in the Most Powerful Quasar

Artist’s impression of a quasar. These all have supermassive black holes at their hearts. Credit: NOIRLab/NSF/AURA/J. da Silva
Artist’s impression of a quasar. These all have supermassive black holes at their hearts. Credit: NOIRLab/NSF/AURA/J. da Silva

After almost seventy years of study, astronomers are still fascinated by active galactic nuclei (AGN), otherwise known as quasi-stellar objects (or “quasars.”) These are the result of supermassive black holes (SMBHs) at the center of massive galaxies, which cause gas and dust to fall in around them and form accretion disks. The material in these disks is accelerated to close to the speed of light, causing it to release tremendous amounts of radiation in the visible, radio, infrared, ultraviolet, gamma-ray, and X-ray wavelengths. In fact, quasars are so bright that they temporarily outshine every star in their host galaxy’s disk combined.

The brightest quasar observed to date, 100,000 billion times as luminous as our Sun, is known as SMSS J114447.77-430859.3 (J1144). This AGN is hosted by a galaxy located roughly 9.6 billion light years from Earth between the constellations Centaurus and Hydra. Using data from the eROSITA All Sky Survey and other space telescopes, an international team of astronomers conducted the first X-ray observations of J1144. This data allowed the team to investigate prevailing theories about AGNs that could provide new insight into the inner workings of quasars and how they affect their host galaxies.

Continue reading “eROSITA Sees Changes in the Most Powerful Quasar”

Juno Reveals Volcanoes on Io

The Juno spacecraft used its JIRAM (Jovian Infrared Auroral Mapper) instrument to capture these images of Jupiter's volcanic moon Io. It captured the four images in sequence to gain different viewing angles of the moon's volcanic activity. Image Credit: NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM

Jupiter’s moon Io is the most volcanic world in the Solar System, with over 400 volcanoes. Some of them eject plumes as high as 500 km (300 mi) above the surface. Its surface is almost entirely shaped by all this volcanic activity, with large regions covered by silicates, sulphur, and sulphur dioxide brought up from the moon’s interior. The intense volcanic activity has created over 100 mountains, and some of them are taller than Mt. Everest.

Io is unique in the Solar System, and the Juno orbiter’s JunoCam captured some new images of Io’s abundant volcanic activity.

Continue reading “Juno Reveals Volcanoes on Io”

An Astronaut Will Be Controlling Several Robots on Earth… from Space

Germany’s DLR has been hosting a series of robotic teleoperation experiments where an astronaut abroad the ISS controls a robot back on the ground. We’ve previously reported on some of their successes. Now it’s time for the next round of experiments, with one individual astronaut on the ISS controlling four separate robots to perform a task back on Earth.

Continue reading “An Astronaut Will Be Controlling Several Robots on Earth… from Space”

SETI Researchers Are Simulating Alien Contact — and You Can Help

Radio telescopes monitor the sky at the Allen Telescope Array in California. Finding a signal from a distant civilization is one way we could experience first contact with ET. (SETI Institute Photo)
Radio telescopes monitor the sky at the Allen Telescope Array in California. Finding a signal from a distant civilization is one way we could experience first contact with ET. (SETI Institute Photo)

Is it a multimedia art project? Or a rehearsal for alien contact? Let’s call it both: Researchers specializing in the search for extraterrestrial intelligence, or SETI, are working with a media artist to stage the receipt of an interstellar message — and a global effort to decode the message.

The project, titled “A Sign in Space,” is orchestrated by media artist Daniela de Paulis in collaboration with the SETI Institute, the European Space Agency, the Green Bank Observatory and the Italian National Institute for Astrophysics (also known as INAF).

The metaphorical curtain rises on May 24, when ESA’s ExoMars Trace Gas Orbiter transmits an encoded radio message from Martian orbit to Earth at 19:00 UTC / noon PDT.

Continue reading “SETI Researchers Are Simulating Alien Contact — and You Can Help”

The Tonga Eruption Was So Powerful it Disrupted Satellites Half a World Away

The Tonga eruption in 2022 sent tons of ash and water into the air and sent an atmospheric pressure wave that helped create an equatorial plasma bubble that disrupted satellite communications that depend on the ionosphere. Courtesy of Himawari-8 satellite.
The Tonga eruption in 2022 sent ash and water into the air and created an atmospheric pressure wave that helped create an equatorial plasma bubble that disrupted satellite communications that depend on the ionosphere. Courtesy of Himawari-8 satellite.

Remember the huge Tonga eruption in the South Pacific in January 2022? This underwater volcano sent tons of ash into the air. It also blew 146 teragrams of water into our atmosphere and the effect of the explosion reached space. It also made life very difficult for people on Tonga, wiping out their communications and sending tsunamis across the South Pacific.

Continue reading “The Tonga Eruption Was So Powerful it Disrupted Satellites Half a World Away”

The Heaviest Neutron Stars Could Have Strange Matter Cores

Physics gets weird at the extremes. Astrophysics usually deals with the extremely large – large energies, large gravities, and lots and lots of stuff. Quantum mechanics, on the other hand, typically deals with the extremely small – quarks and other particles that are completely unseen by the human eye. So far, despite decades of trying, no Grand Unified Theory (or any other theory) combines these two opposed theories. This makes it all the more interesting that a team from the Purple Mountain Observatory of the Chinese Academy of Sciences proposed an idea that the interior cores of neutron stars, one of the most extreme examples of large extremes in the universe, might be made up of a type of tiny particle that makes up part of the “soup” of quantum mechanics called a strange quark. 

Continue reading “The Heaviest Neutron Stars Could Have Strange Matter Cores”

Four Private Astronauts Are Now on the International Space Station

The SpaceX Dragon crew ship launches four Axiom Mission-2 astronauts to the space station from NASA’s Kennedy Space Center on May 21, 2023. Credit: SpaceX

On Sunday, May 21, the 4-person crew of Axiom Mission 2 (Ax-2) blasted off to the International Space Station (ISS) on board a SpaceX Crew Dragon, and today, May 22, the private astronaut crew boarded the International Space Station for a scheduled 10-day stay.

Continue reading “Four Private Astronauts Are Now on the International Space Station”

Astronomers Watched a Fast Radio Burst Go Right Through a Star’s Atmosphere

The Green Bank Telescope was able to observe the directional changes of waves from the fast radio burst FRB20190520B as viewed through the lens of a massive star’s atmosphere. Image credit: NSF/GBO/P.Vosteen.
The Green Bank Telescope was able to observe the directional changes of waves from the fast radio burst FRB 20190520B as viewed through the lens of a massive star’s atmosphere. Image credit: NSF/GBO/P.Vosteen.

The universe is filled with things that go flash in the night. That includes fast radio bursts (FRBs). These are brilliant, powerful blips of radio emissions from distant and mysterious sources. Astronomers studying one called FRB 20190520B noticed something fascinating about its signals. They get polarized as they travel outward from the source.

Continue reading “Astronomers Watched a Fast Radio Burst Go Right Through a Star’s Atmosphere”

There's So Much Going on in This Star-Forming Nebula

A view of the Lupus 3 dark nebula and nearby protostars. Credit: CTIO/NOIRLab/DOE/NSF/AURA/ T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab)

There are some astronomical images that capture rapturous beauty, with their brilliant colors and interplay of shadow and light. A beautiful image can be enough to stir the soul, but in astronomy they often also have a story to tell. An example of this can be seen in a recent image released by NSF’s NOIRLab.

Continue reading “There's So Much Going on in This Star-Forming Nebula”

Remember Those Impossibly Massive Galaxies? They May Be Even More Massive

The first image taken by the James Webb Space Telescope, featuring the galaxy cluster SMACS 0723. Credit: NASA, ESA, CSA, and STScI

The James Webb Space Telescope (JWST) was designed to probe the mysteries of the Universe, not the least of which is what the first galaxies looked like. These galaxies formed during the Epoch of Reionization (aka. “Cosmic Dawn”), which lasted from about 100 to 500 million years after the Big Bang. By observing these galaxies and comparing them to ones that see closer to our own today, astronomers hope to test the laws of physics on the grandest of scales and what role (if any) Dark Matter and Dark Energy have played.

Unfortunately, early into its campaign, the JWST detected galaxies from this period so massive that they were inconsistent with our understanding of how the Universe formed. The most widely-accepted theory for how this all fits together is known as the Lambda Cold Dark Matter (LCDM) cosmological model, which best describes the structure and evolution of the Universe. According to the latest results from the Cosmic Dawn Center, these galaxies may be even more massive than previously thought, further challenging our understanding of the cosmos.

Continue reading “Remember Those Impossibly Massive Galaxies? They May Be Even More Massive”