Eta Carinae- A Naked Eye Enigma

Credit: X-ray: NASA/CXC/GSFC/M.Corcoran et al.; Optical: NASA/STScI

[/caption]

Eta Carinae is a beast of a star. At more than 100 solar masses and 4 million times the luminosity of our Sun, eta Car balances dangerously on the edge of stellar stability and it’s ultimate fate: complete self-destruction as a supernova. Recently, Hubble Space Telescope observations of the central star in the eta Carinae Nebula have raised an alert on eta Car among the professional community. What they discovered was totally unexpected.

“It used to be, that if you looked at eta Car you saw a nebula and then a faint little core in the middle” said Dr. Kris Davidson, from the University of Minnesota. “Now when you look at it, it’s basically the star with a nebula. The appearance is completely different. The light from the star now accounts for more than half the total output of eta Car. I didn’t expect that to happen until the middle of this century. It’s decades ahead of schedule. We know so little about these very massive objects, that if eta Car becomes a supernova next Thursday we should not be very surprised.”

In 1843, eta Carinae underwent a spectacular eruption, making it the second brightest star in the sky behind Sirius. During this violent episode, eta Car ejected 2 to 3 solar masses of material from the star’s polar regions. This material, traveling at speeds close to 700 km/s, formed two large, bipolar lobes, now known as the Homunculus Nebula. After the great eruption, Eta Car faded, erupted again briefly fifty years later, then settled down, around 8th magnitude. Davidson picks up the story from there.

This light curve depicts the visual apparent brightness of Eta Car from 1822 to date. It contains visual estimates (big circles), photographic (squares), photoelectric (triangles) and CCD (small circles) observations. All of them have been fitted for consistency of the whole data. Red points are recent observations from La Plata (Feinstein 1967; Fernández-Lajús et al., 2009, 2010). Used by permission.
This light curve depicts the visual apparent brightness of Eta Car from 1822 to date. It contains visual estimates (big circles), photographic (squares), photoelectric (triangles) and CCD (small circles) observations. All of them have been fitted for consistency of the whole data. Red points are recent observations from La Plata (Feinstein 1967; Fernández-Lajús et al., 2009, 2010). Used by permission.

“Around 1940, Eta suddenly changed its state. The spectrum changed and the brightness started to increase. Unfortunately, all this happened at a time when almost no one was looking at it. So we don’t know exactly what happened. All we know is that by the 1950’s, the spectrum had high excitation Helium lines in it that it didn’t have before, and the whole object, the star plus the Homunculus, was gradually increasing in brightness. In the past we’ve seen three changes of state. I suspect we are seeing another one happening now.”

During this whole time eta Car has been shedding material via its ferocious stellar winds. This has resulted in an opaque cloud of dust in the immediate vicinity of the star. Normally, this much dust would block our view to the star. So how does Davidson explain this recent, sudden increase in the luminosity of eta Carinae?

“The direct brightening we see is probably the dust being cleared away, but it can’t be merely the expansion of the dust. If it’s clearing away that fast, either something is destroying the dust, or the stellar wind is not producing as much dust as it did before. Personally, I think the stellar wind is decreasing, and the star is returning to the state it was in more than three hundred years ago. In the 1670’s, it was a fourth magnitude, blue, hot star. I think it is returning to that state. Eta Carinae has just taken this long to readjust from its explosion in the 1840’s.”

After 150 years what do we really know about one of the great mysteries of stellar physics? “We don’t understand it, and don’t believe anyone who says they do,” said Davidson.  “The problem is we don’t have a real honest-to-God model, and one of the reasons for that is we don’t have a real honest-to-God explanation of what happened in 1843.”

Can amateur astronomers with modest equipment help untangle the mysteries of eta Carinae? Davidson think so, “The main thing is to make sure everyone in the southern hemisphere knows about it, and anyone with a telescope, CCD or spectrograph should have it pointed at eta Carinae every clear night.”

The View from Down Under

Something that baffled me throughout my childhood, growing up in Australia, was the frequent references to the Man in the Moon, in children’s books and other popular media. I just couldn’t see it.

Only in my adult years have I put two and two together and realized that all those references were made by people from the Northern Hemisphere.

South of the equator we really are down under, even in astronomical terms. All the stuff you can see in the night sky around the celestial equator and the ecliptic we can see too, but it’s all upside down (or from our point of view, right side up).

So the lunar maria you see on the Moon’s surface, we can see too, but upside down none of it looks anything like a human face.

And Orion’s Belt? Nope, don’t get that either. obeltconstWhat we see is an asterism we like to call ‘the Saucepan’ because what you see as a dagger hanging off a belt, we see as a handle rising from a pot.

We’ve also got our own down under Aurora Australis, although you’d have to105412main_High_res_jan05 climb a mountain in Tasmania, or even better catch an icebreaker to Antarctica, to see it.

But look, I’m envious. You’ve got a pole star, Polaris, which we never get to see. And you get a good view of the Andromeda Galaxy, which just barely peeks over our northern horizon around summer.

Down under, we have to use the Southern Cross to find the southern celestial pole. The Cross contains some of the southern sky’s brightest stars. During the winter months when it’s high in the sky, it’s generally the first group of stars to become visible after sunset, along with the nearby Pointer stars – which are actually Alpha and Beta Centauri.

The Southern Cross is kite-shaped and if you draw a line out from the kite’s long axis and another line out from between the Pointers, those two lines meet at the southern celestial pole. From there, just drop your hand straight down to the horizon and you are pointing due South. Cheaper than a compass.south

We also have a couple of dwarf galaxies to look at, being the Large and Small Magellanic Clouds. OK, they are much smaller than Andromeda, but they are also a lot closer and hence appear much bigger. To the naked eye, they really do look like a couple of faint, wispy clouds.

For most southern sky observers, the Magellanic Clouds and the Southern Cross are circumpolar, slowly spinning around the southern celestial pole each night without ever setting.

You probably know that the story about how water spirals down the plug hole in opposite directions on either side of the equator is just urban myth. But it is the case that while stars in the Northern Hemisphere appear to spin slowly around Polaris in an anti-clockwise direction, all our stars spin around the southern celestial pole in a clockwise direction.

It’s true – fair dinkum.

Amazing Images from STS-129

If I didn’t know better, I’d swear some of the images from the STS-129 shuttle mission to the International Space Station were CGI renderings taken from a science fiction novel. Take the above image, for example of astronaut Mike Foreman working on the exterior of the ISS during the second space walk of the mission. It looks almost surreal. But these are genuine images of real people working on an authentic, almost-completed space station. This images, and the other images below, leave me in awe of what we are accomplishing in space. Enjoy this gallery of amazing images from the fifth and last shuttle flight of 2009.

Robert Satcher on the Canadarm2 during the first space walk of STS-129. Credit: NASA
Robert Satcher on the Canadarm2 during the first space walk of STS-129. Credit: NASA

Here’s another awe-inspiring image. Anchored to a Canadarm2 mobile foot restraint, astronaut Robert Satcher Jr. works during the first space walk of the mission. Satcher and Mike Foreman (out of frame)installed antennas, cables, and other items to prepare for the Tranquility node that will be brought up to the station next year.

Starship Enterprise?  No, just the space shuttle and space station. Credit: NASA
Starship Enterprise? No, just the space shuttle and space station. Credit: NASA

There was some chatter on Twitter that this image brought to mind visions of the Starship Enterprise from Star Trek. But this is a closeup of Atlantis’ docking ring backdropped by the ISS as the shuttle crew approached for docking with the station. Docking occurred at 10:51 a.m. (CST) on Nov. 18, 2009.

Sun rise in space. Credit: NASA

Another great shot: Sunrise in space. This scene shows from the Russian section of the ISS, as photographed by one of the STS-129 crew members.

Satcher works on the Z1 truss.  Credit: NASA
Satcher works on the Z1 truss. Credit: NASA

I always love these images which demonstrate how HUGE the ISS is. Here, Robert Satcher works on the Z1 truss section during the first EVA of the mission.

ISS and docked spacecraft. Credit: NASA
ISS and docked spacecraft. Credit: NASA

Taking on the appearance of a busy spaceport, the Russian segment of the ISS has a docked Soyuz spacecraft (center) and a Progress resupply vehicle that is docked to the Pirs Docking Compartment.

Mike Foreman looks at his spacewalking partner Randy Bresnik.  Credit: NASA
Mike Foreman looks at his spacewalking partner Randy Bresnik. Credit: NASA

Every shuttle mission picture gallery isn’t complete without a picture of an astronaut with another astronaut visible in the helmet visor reflection. Here, Mike Foreman’s helmet reveals his crewmate, Randy Bresnik, capturing the image with an electronic still camera. The two were in the midst of the second scheduled space walk for the Atlantis crewmembers.

Upside down, or not?  Credit: NASA
Upside down, or not? Credit: NASA

Who is upside down? Charlie Hobaugh (left), STS-129 commander and Robert Satcher , or the astronaut who took the picture? The two are pictured near a window in the Destiny laboratory.

Mealtime on the ISS. Credit: NASA
Mealtime on the ISS. Credit: NASA

Eight of the 12 crew members of the joint ISS/shuttle crews pose for a photo at the galley in the Unity node. Pictured from the left are NASA astronauts Leland Melvin, Robert Satcher Jr., Charlie Hobaugh, Nicole Stott, cosmonauts Roman Romanenko, Maxim Suraev, and astronauts Jeff Williams, and Frank De Winne, commander of Expedition 21 from the ESA.

Launch of Atlantis on Nov. 16, 2009. Credit: NASA
Launch of Atlantis on Nov. 16, 2009. Credit: NASA

A gorgeous shot of Atlantis’ launch on Nov. 16. Below is another launch picture, with the members of the NASA Tweetup watching by the famous countdown clock.

Atlantis' launch with Twitterers.  Photo credit:Jim Grossmann
Atlantis' launch with Twitterers. Photo credit:Jim Grossmann

New Findings On Allen Hills Meteorite Point to Microbial Life

Scientists caused quite a stir in 1996 when they announced a meteorite had been found in Antarctica that might contain evidence for microscopic fossils of Martian bacteria. While subsequent studies of the now famous Allen Hills Meteorite shot down theories that the Mars rock held fossilized alien life, both sides debated the issue and the meteorite is still being studied. Now, Craig Covault in Spaceflightnow.com reports that a new look at ALH84001 provides “evidence that supports the existence of life on the surface of Mars, or in subsurface water pools, early in the planet’s history.” Covault says we can expect a public announcement by NASA Headquarters within a few days.

Research using a more advanced High Resolution Electron Microscopy than was in existence when the initial findings were made 13 years ago has provided the new evidence. Covault reported that the “laboratory sensors are being focused directly on carbonate discs and associated tiny magnetite crystals present inside the meteorite Allen Hills ALH 84001.” The data reveal information that counters a “wide range of opposing theories as to why the finding should not be supported as biological in origin.”

The new findings were reported in the November issue of the respected journal Geochimica et Cosmochimica Acta, the journal of the Geochemical and Meteoritic Society. The authors include Kathie Thomas-Keprta, Simon Clement, David McKay (who led the original team), Everett Gibson and Susan Wentworth, all of the Johnson Space Center.

Covault said the new work centers on what is called magnetic bacteria that on Earth, and Mars as well, leave distinctively-shaped remnants in the rock. These features test with a high chemical purity more like a biological feature than geological.

For more details, read the article on Spaceflightnow.com

Exciting! Stay tuned…

First Black Holes May Have Formed in “Cocoons”

Artist concept of a view inside a black hole. Credit: April Hobart, NASA, Chandra X-Ray Observatory
Artist concept of a view inside a black hole. Credit: April Hobart, NASA, Chandra X-Ray Observatory

Very likely, the last image that comes to mind when thinking of black holes is that they need to be nurtured, coddled and protected when young. But new research reveals the first large black holes in the universe likely formed and grew deep inside gigantic, starlike cocoons that smothered their powerful x-ray radiation and prevented surrounding gases from being blown away.

“Until recently, the thinking by many has been that supermassive black holes got their start from the merging of numerous, small black holes in the universe,” said Mitchell Begelman, from the University of Colorado-Boulder. “This new model of black hole development indicates a possible alternate route to their formation.”
Ordinary black holes are thought to be remnants of stars slightly larger than our sun that used up their fuel and died.

But the first big black holes likely formed from very large stars that formed early in the Universe, probably within the first few hundred million years after the Big Bang. The unique process of these large stars becoming black holes includes the formation of a protective cocoon, made of gas.

“What’s new here is we think we have found a new mechanism to form these giant supermassive stars, which gives us a new way of understanding how big black holes may have formed relatively fast,” said Begelman.
These early supermassive stars would have grown to a huge size — as much as tens of millions of times the mass of our sun — and would have been short-lived, with its core collapsing in just in few million years.

The main requirement for the formation of supermassive stars is the accumulation of matter at a rate of about one solar mass per year, said Begelman. Because of the tremendous amount of matter consumed by supermassive stars, subsequent seed black holes that formed in their centers may have started out much bigger than ordinary black holes.

Begelman said the hydrogen-burning supermassive stars would had to have been stabilized by their own rotation or some other form of energy like magnetic fields or turbulence in order to facilitate the speedy growth of black holes at their centers.

After the seed black holes formed, the process entered its second stage, which Begelman has dubbed the “quasistar” stage. In this phase, black holes grew rapidly by swallowing matter from the bloated envelope of gas surrounding them, which eventually inflated to a size as large as Earth’s solar system and cooled at the same time, he said.

Once quasistars cooled past a certain point, radiation began escaping at such a high rate that it caused the gas envelope to disperse and left behind black holes up to 10,000 times or more the mass of Earth’s sun. With such a big head start over ordinary black holes, they could have grown into supermassive black holes millions or billions of times the mass of the sun either by gobbling up gas from surrounding galaxies or merging with other black holes in extremely violent galactic collisions.

Begelman said big black holes formed from early supermassive stars could have had a huge impact on the evolution of the universe, including galaxy formation, possibly going on to produce quasars — the very bright, energetic centers of distant galaxies that can be a trillion times brighter than our sun.

Begelman’s paper will be published in Monthly Notices of the Royal Astronomical Society.

Source: EurekAlert

Requiem – Daniel Marquardt


“Looking up in the sky is one of the greatest things a human being can do. Going out to a silent and dark site, enjoying the beauty of the Universe with friends. You will forget all the problems here on Earth, because you realize that we are only a little funny thing on this ball we call Earth, flying through our galaxy we call Milky Way. There is more out there that wants to be discovered. Sit back and take a journey through our real home and through space and time.” And remember Daniel Marquardt…

daniel_mIt is with deepest sadness that I report the passing of Daniel Marquardt on November 23, 2009. I got the news as soon as I arrived on-line and I felt the tug on my heart-strings hard and heavy. I have reviewed a lot of Daniel’s work and not a week before had made plans to work with him on an in-depth article for AstroPhoto Insight Magazine. I looked at his images and had plans of doing illustrated soft-science articles here on Universe Today.

And I thought there was time…

It’s funny how our time passes so quickly – and how quickly we can regret not seizing a moment. Daniel lived in Zurich, Switzerland and did his imaging remotely through his Takahashi FSQ106N refractor located in his robotic observatory in Southern France. Too distant for Ohio gal? Not hardly. The internet has made us all much closer and Daniel was a co-member of a group of astrophotographers I love. His star was burning brightly… But I didn’t see it clearly until too late.

m45

Said Daniel, “My goal is to share the beauty of our Universe with everyone. Why am I doing astrophotography? In normal photography you are imaging objects you see through your viewfinder. That’s quite simple. Looking at the object and pressing the release. In less than a second you will find your final image on the memory card and you’ll look at it once. It’s a big difference in astrophotography: The most fascinating point here is that you are not seeing the object with your eyes! It gets only visible if you have a large optical mirror or lens (or both) in front of your camera, that collects many photons. The second difference is that you are not exposing less than a second – you are probably opening the shutter for many hours! Why? Your eye is “updating” the image you see very often. But you can control the opening of your shutter in the camera: The longer the shutter is open, the more photons of an object can crash into the sensitive electronic eye. That’s the magic behind astrophotography.”

And Daniel’s work was truly magic. His images caught the eyes and hearts of astrophotography fans everywhere, like this superb rendition of the “Heart and Soul” nebula which appeared as a NASA Astronomy Picture of the Day on February 14, 2009.

heart

Daniel’s heart and soul was in his astrophotography and in sharing the Universe with us, he captured far more than just collected photons – he captured distant visions for us to feast our eager eyes upon.

M51_LB

If there is a memory card in our minds, don’t just look through the viewfinder of life and look once. That second is all too brief – like the shining star that was Daniel Marquardt. Take his life’s lessons, dedication and courage in the face of illness and turn it into brilliant moment… And remember a very talented young man. Godspeed, Daniel… Godspeed…

lulin

“I am like a slip of comet,
Scarce worth discovery, in some corner seen
Bridging the slender difference of two stars,
Come out of space, or suddenly engender’d
By heady elements, for no man knows;
But when she sights the sun she grows and sizes
And spins her skirts out, while her central star
Shakes its cocooning mists; and so she comes
To fields of light; millions of travelling rays
Pierce her; she hangs upon the flame-cased sun,
And sucks the light as full as Gideons’s fleece:
But then her tether calls her; she falls off,
And as she dwindles shreds her smock of gold
Between the sistering planets, till she comes
To single Saturn, last and solitary;
And then she goes out into the cavernous dark.
So I go out: my little sweet is done:
I have drawn heat from this contagious sun:
To not ungentle death now forth I run.”

— Gerard Manley Hopkins

All images here are the work of Daniel Marquardt. Please take the time to visit Sky Image CCD Astronomy.

Quintessence

Quintessence is one idea – hypothesis – of what dark energy is (remember that dark energy is the shorthand expression of the apparent acceleration of the expansion of the universe … or the form of mass-energy which causes this observed acceleration, in cosmological models built with Einstein’s theory of general relativity).

The word quintessence means fifth essence, and is kinda cute … remember Earth, Water, Fire, and Air, the ‘four essences’ of the Ancient Greeks? Well, in modern cosmology, there are also four essences: normal matter, radiation (photons), cold dark matter, and neutrinos (which are hot dark matter!).

Quintessence covers a range of hypotheses (or models); the main difference between quintessence as a (possible) explanation for dark energy and the cosmological constant Λ (which harks back to Einstein and the early years of the 20th century) is that quintessence varies with time (albeit slooowly), and can also vary with location (space). One version of quintessence is phantom energy, in which the energy density increases with time, and leads to a Big Rip end of the universe.

Quintessence, as a scalar field, is not the least bit unusual in physics (the Newtonian gravitational potential field is one example, of a real scalar field; the Higgs field of the Standard Model of particle physics is an example of a complex scalar field); however, it has some difficulties in common with the cosmological constant (in a nutshell, how can it be so small).

Can quintessence be observed; or, rather, can quintessence be distinguished from a cosmological constant? In astronomy, yes … by finding a way to observed (and measure) the acceleration of the universe at widely different times (quintessence and Λ predict different results). Another way might be to observe variations in the fundamental constants (e.g. the fine structure constant) or violations of Einstein’s equivalence principle.

One project seeking to measure the acceleration of the universe more accurately was ESSENCE (“Equation of State: SupErNovae trace Cosmic Expansion”).

In 1999, CERN Courier published a nice summary of cosmology as it was understood then, a year after the discovery of dark energy The quintessence of cosmology (it’s well worth a read, though a lot has happened in the past decade).

Universe Today articles? Yep! For example Will the Universe Expand Forever?, More Evidence for Dark Energy, and Hubble Helps Measure the Pace of Dark Energy.

Astronomy Cast episodes relevant to quintessence include What is the universe expanding into?, and A Universe of Dark Energy.

Source: NASA

Try Your Hand At Galaxy Zoo’s New “Slot Machine”

Galaxy mergers, such as the Mice Galaxies will be part of Galaxy Zoo's newest project. Credit: Hubble Space Telescope
The Mice galaxies, merging. Credit: Hubble Space Telescope

Here’s your chance to play online slot machines without risking your life savings. Plus it’s an opportunity to contribute to a citizen science project that is sure to revolutionize our understanding of galaxy mergers. Galaxy Zoo’s newest project asks for help in looking at colliding galaxies, and uses a tool akin to a cosmic slot machine to compare images of galactic pile-ups with millions of simulated mergers.

“The analogy I’ve been using is that it is like driving past a car crash,” said Galaxy Zoo team member Chris Lintott from Oxford University. “You get a snapshot of the action, but there are two things you want to know: what caused the crash (or what did things look like before it all went wrong), and you want to know what the outcome is going to be. We’re doing the same thing. We want to know what the galaxies looked like before the mergers started disrupting them, and we want to know how they are going to end up. Just like our other Galaxy Zoo projects, humans are much better at doing this than computers, and lots of humans are even better.”

The Galaxy Zoo mergers project goes live on November 24 at http://mergers.galaxyzoo.org

“This is another classic Galaxy Zoo problem,” Lintott told Universe Today. “We found 3,000 galaxy mergers from Galaxy Zoo 1, and we don’t have a good understanding of the processes that take place during and after the collisions. This new project will help us work that out.”

On the Galaxy Zoo Mergers page, there will be a real image of a galactic merger in the center and with eight randomly selected merger simulations filling the other eight ‘slots’ around it. Visitors to the site pick which animation best demonstrates what is happening in that collision. But if they don’t see a good simulation, they can “spin the wheel again,” Lintott said, until a good depiction of the merger shows up.

A Grazing Encounter Between Two Spiral Galaxies (NGC 2207 and IC2163).  Credit: HubbleSite
A Grazing Encounter Between Two Spiral Galaxies (NGC 2207 and IC2163). Credit: HubbleSite

“By randomly cycling through the millions of simulated possibilities and selecting only the very best matches the users are helping to build up a profile of what kind of factors are necessary to create the galaxies we see in the Universe around us — and, hopefully, having fun too,” Lintott said.

There’s also the “enhance” option, where you can take control. “Once you have picked a simulation, you can take control of it directly, and change the parameters by hand such as the size, mass, the speed, for example. So, if you get impatient you can take control and see if you can do a better job than the slot machine,” Lintott explained.

For some of mergers, there will be a unique solution – only one way to get the merger we see today. For others there may be many different simulations that could provide the answer.

The Mergers project is a bit different than the regular Galaxy Zoo in that there will be, initially, just one daily challenge. “We’re aiming for one a day, but obviously if everyone who reads Universe Today turns up, we’ve got an idea of how many people we need to look at each one, so then we’ll change them out quicker,” Lintott said. “The more that people do, the more galaxies they’ll get to see.”

Of course, galaxy mergers are beautiful and amazing astronomical objects to behold, so the Galaxy Zoo team is hoping this will be a popular project.

“The point of Galaxy Zoo is to try and understand how we got the mix of galaxies that we see today,” Lintott said. “One of the mysteries is trying to work out how the ellipticals formed. We know that one way to form elliptical is to smash two spirals together. There’s the famous simulation of the Milky Way and Andromeda colliding and everyone assumes it will end up as a big elliptical that has used up all its gas. But actually it’s not clear how often that happens, and it’s not clear that you always get elliptical when you smash spirals together. In fact we know that in some cases they don’t. There is a lot of debate as to how important mergers are in this process.”

Right now, 3% of galaxies are in the process of merging, so, Lintott said, if most big galaxies undergo a merger every million years or so, this is clearly an important process.

“But we don’t understand what affects it has, and that’s what we hope to realize in this project.”

And Lintott admitted this newest Galaxy Zoo project is supposed to be fun and addictive. “Some people will love it, and some people will probably prefer the regular Galaxy Zoo. But it’s nice to have a range of scientific tasks that we have to work through.”

For more information:

Galaxy Zoo Mergers

Galaxy Zoo

Baby Brown Dwarfs Provide Clues to Solve Mystery

Why – and how — do brown dwarfs form? Since these cosmic misfits fall somewhere between planets and stars in terms of their temperature and mass, astronomers haven’t yet been able to determine how they form: are their beginnings like planets or stars? Now, the Spitzer Space Telescope has found what could be two of the youngest brown dwarfs. While astronomers are still looking to confirm the finding of these so-called “proto brown dwarfs” it has provided a preliminary answer of how these unusual stars form.

The baby brown dwarfs were found in Spitzer data collected in 2005. Astronomers had focused their search in the dark cloud Barnard 213, a region of the Taurus-Auriga complex well known to astronomers as a hunting ground for young objects.

“We decided to go several steps back in the process when (brown dwarfs) are really hidden,” said David Barrado of the Centro de Astrobiología in Madrid, Spain, lead author of the paper, published in the Astronomy & Astrophysics journal. “During this step they would have an (opaque) envelope, a cocoon, and they would be easier to identify due to their strong infrared excesses. We have used this property to identify them. This is where Spitzer plays an important role because Spitzer can have a look inside these clouds. Without it this wouldn’t have been possible.”

Barrado said the findings potentially solve the mystery about whether brown dwarfs form more like stars or planets. The team’s findings? Brown dwarfs form like low-mass stars.

Brown dwarfs are cooler and more lightweight than stars and more massive (and normally warmer) than planets. They are born of the same dense, dusty clouds that spawn stars and planets. But while they may share the same galactic nursery, brown dwarfs are often called “failed” stars because they lack the mass of their hotter, brighter stellar siblings. Without that mass, the gas at their core does not get hot enough to trigger the nuclear fusion that burns hydrogen — the main component of these molecular clouds — into helium. Unable to ignite as stars, brown dwarfs end up as cooler, less luminous objects that are more difficult to detect — a challenge that was overcome in this case by Spitzer’s heat-sensitive infrared vision.

This artist's rendering gives us a glimpse into a cosmic nursery as a star is born from the dark, swirling dust and gas of this cloud. Image credit: NASA/JPL-Caltech
This artist's rendering gives us a glimpse into a cosmic nursery as a star is born from the dark, swirling dust and gas of this cloud. Image credit: NASA/JPL-Caltech

Young brown dwarfs also evolve rapidly, making it difficult to catch them when they are first born. The first brown dwarf was discovered in 1995 and, while hundreds have been found since, astronomers had not been able to unambiguously find them in their earliest stages of formation until now.

Spitzer’s longer-wavelength infrared camera penetrated the dusty natal cloud to observe STB213 J041757. The data, confirmed with near-infrared imaging from Calar Alto Observatory in Spain, revealed not one but two of what would potentially prove to be the faintest and coolest brown dwarfs ever observed.

The twins were observed from around the globe, and their properties were measured and analyzed using a host of powerful astronomical tools. One of the astronomers’ stops was the Caltech Submillimeter Observatory in Hawaii, which captured the presence of the envelope around the young objects. That information, coupled with what they had from Spitzer, enabled the astronomers to build a spectral energy distribution — a diagram that shows the amount of energy that is emitted by the objects in each wavelength.

From Hawaii, the astronomers made additional stops at observatories in Spain (Calar Alto Observatory), Chile (Very Large Telescopes) and New Mexico (Very Large Array). They also pulled decade-old data from the Canadian Astronomy Data Centre archives that allowed them to comparatively measure how the two objects were moving in the sky. After more than a year of observations, they drew their conclusions.

“We were able to estimate that these two objects are the faintest and coolest discovered so far,” Barrado said. This theory is bolstered because the change in brightness of the objects at various wavelengths matches that of other very young, low-mass stars.

While further study will confirm whether these two celestial objects are in fact proto brown dwarfs, they are the best candidates so far, Barrado said. He said the journey to their discovery, while difficult, was fun. “It is a story that has been unfolding piece by piece. Sometimes nature takes its time to give up its secrets.”

Lead image caption: This image shows two young brown dwarfs, objects that fall somewhere between planets and stars in terms of their temperature and mass. Image credit: NASA/JPL-Caltech/Calar Alto Obsv./Caltech Sub. Obsv.

Source: JPL

Carnival of Space #130

This week’s Carnival of Space is hosted over at the Chandra Blog.

Click here to read the Carnival of Space #130.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, let Fraser know if you can be a host, and he’ll schedule you into the calendar.

Finally, if you run a space-related blog, please post a link to the Carnival of Space. Help us get the word out.