Kathy Lueders Was NASA's Top Human Spaceflight Official. Now She Works for SpaceX

Kathy Lueders, seen in the Launch Control Center at NASA’s Kennedy Space Center applauds during the SpaceX Demo-2 mission in May 2020, the first launch with astronauts on board the SpaceX Crew Dragon. At the time, Lueders the manager of NASA's Commercial Crew Program; she has now joined SpaceX. Credit: NASA

Another of NASA’s top human spaceflight officials has joined SpaceX. Kathy Leuders, the former associate administrator for NASA’s Space Operations Mission Directorate, retired from NASA on May 1 after 31 years of service.  But this week, CNBC reports that Lueders has joined SpaceX at the company’s Starbase facility in Texas. She follows Bill Gerstenmaier, who retired from NASA in 2020 and became a senior executive at SpaceX as build and flight reliability vice president.

Continue reading “Kathy Lueders Was NASA's Top Human Spaceflight Official. Now She Works for SpaceX”

Astronomers Have a New Way to Measure the Expansion of the Universe

Multiple observations of the Refsdal supernova. Credit: Kelly,et al

The cosmos is expanding at an ever-increasing rate. This cosmic acceleration is caused by dark energy, and it is a central aspect of the evolution of our universe. The rate of cosmic expansion can be expressed by a cosmological constant, commonly known as the Hubble constant, or Hubble parameter. But while astronomers generally agree this Hubble parameter exists, there is some disagreement as to its value.

Continue reading “Astronomers Have a New Way to Measure the Expansion of the Universe”

An Innovative Heat Shield That Doesn’t Need to Be Replaced Between Missions

A revolution in space manufacturing is coming. Enabled by cheaper launch costs, companies are scrambling to take advantage of easier access to the benefits space offers as a manufacturing environment. These include a constant vacuum, near absolute zero temperatures, and a lack of any significant gravity. These features would enable easier processing and manufacturing of hundreds of products, from pharmaceuticals to metal alloys. The tricky part is getting them back down to Earth, where they can be used. 

A company based in the UK recently revealed what they think is a viable solution for that. Space Forge, which is developing a reusable manufacturing platform for use in space, recently discussed their Pridwen heat shield. The most remarkable thing about this new heat shield is it’s reusable.

Continue reading “An Innovative Heat Shield That Doesn’t Need to Be Replaced Between Missions”

Astronomers Want Your Help to Identify Risky Asteroids

Catalina Sky Survey 60-inch telescope
The Catalina Sky Survey 60-inch telescope observes the cosmos from Mount Lemmon in Arizona. (Credit: Catalina Sky Survey)

You, too, can be an asteroid hunter — thanks to a citizen-science project launched by the University of Arizona’s Lunar and Planetary Laboratory. And you might even get a scientific citation.

The project is enlisting human spotters to verify potential detections of space rocks moving through the field of view of the Catalina Sky Survey’s telescopes. The NASA-funded survey is charged with keeping track of more than a million asteroids, with a principal goal of identifying near-Earth objects that could pose a risk to our planet.

More than 14,400 near-Earth objects, or NEOs, have been discovered by the Catalina Sky Survey during the past 30 years, including 1,200 that were identified just in the past year. That adds up to nearly half of the known NEO population.

The problem is, astronomers know there are still lots of unknown asteroids out there — too many for them to spot without an assist from amateurs. “We take so many images of the sky each night that we cannot possibly look through all of our potential real asteroids,” Carson Fuls, a science engineering specialist for the Catalina Sky Survey, said in a NASA news release. That’s where the Daily Minor Planet can make a difference.

Continue reading “Astronomers Want Your Help to Identify Risky Asteroids”

It’s Time to Figure Out How to Land Large Spacecraft Safely on Other Worlds

Exhaust plume-surface interaction, more commonly known as brownout, while landing on the Moon. (Credit: Reproduced with permission from A. Rahimi, O. Ejtehadi, K.H. Lee, R.S. Myong, Acta Astronautica, 175 (2020) 308-326. ©2018 Elsevier.)

One of the most iconic events in history is Apollo 11 landing on the lunar surface. During the descent, astronauts Neil Armstrong and Edwin “Buzz” Aldrin are heard relaying commands and data back and forth to mission control across 385,000 kilometers (240,000 miles) of outer space as the lunar module “Eagle” slowly inched its way into the history books.

In the final moments before touchdown, Aldrin can be heard saying, “Picking up some dust”, followed by large dust clouds shooting outward from underneath from the spacecraft as the exhaust plumes interacted with the lunar surface, more commonly known as brownout or brownout effect. This significantly reduced the visibility for Armstrong and Aldrin as they landed, and while they successfully touched down on the Moon, future astronauts might not be so lucky.

Continue reading “It’s Time to Figure Out How to Land Large Spacecraft Safely on Other Worlds”

Seismic Waves Help Map the Core of Mars for the First Time

An artist’s depiction of the Martian interior and the paths taken by the seismic waves as they traveled through the planet’s core. Image courtesy of NASA/JPL and Nicholas Schmerr.
An artist’s depiction of the Martian interior and the paths taken by the seismic waves as they traveled through the planet’s core. Image courtesy of NASA/JPL and Nicholas Schmerr.

More than a hundred years after geologists first observed how seismic waves traveled through Earth, they’ve achieved another seismic first. This time, they measured “core-transiting seismic waves” moving through Mars. The InSight lander’s seismic instrument tracked shockwaves generated by an earthquake and an impact event. Their behavior revealed for the first time that Mars very likely has a liquid core. It’s made of a single blob of molten iron alloy.

Continue reading “Seismic Waves Help Map the Core of Mars for the First Time”

The Moon has a Solid Core Like the Earth

A new study suggests that the moon's magnetic field from a dynamo in its liquid metallic core (inner red sphere) lasted 1 billion years longer than thought. (Image credit: Hernán Cañellas (provided by Benjamin Weiss))

Some fifty years ago, the Apollo Program sent the first astronauts to the Moon. In addition to the many science experiments they conducted on the surface, the Apollo astronauts brought back samples of lunar rock for analysis. The Soviet Luna program sent several robotic missions to the Moon around the same time that conducted sample-return missions. The examination of these rocks revealed a great deal about the composition of the Moon and led to new theories about the formation and evolution of the Earth-Moon system.

For example, analysis of the rocks revealed that the Earth and the Moon are similarly composed of silicate minerals and metals. This led to theories that the Moon’s interior is similarly divided into a silicate mantle and crust and a metallic core. However, many aspects of this theory, like the structure of the core (solid or molten?), have been debated for decades. According to new findings by a team of French scientists, it is now a scientific certainty that the Moon’s innermost region consists of a solid inner core surrounded by a molten outer core (just like Earth’s).

Continue reading “The Moon has a Solid Core Like the Earth”

Astronomers Find a “Red Nova”: A Main-Sequence Star Just Eating its Planet

Artist's impression of a Jupiter-sized exoplanet orbiting an M-dwarf star

Back in 2020 astronomers observed a Red Nova, which while enormously powerful, is on the low side of energetic events in the universe. Now an astronomer has studied the event in close detail and has come to the conclusion that we have just witnessed a star destroying its own planet.

Continue reading “Astronomers Find a “Red Nova”: A Main-Sequence Star Just Eating its Planet”

Galactic Black Hole Winds Blow Up to a Third the Speed of Light. The Impact on Their Galaxies is Impressive.

An artist’s impression of what the dust around a quasar might look like from a light year away. Credit Peter Z. Harrington

They are known as ultra-fast outflows (UFOs), powerful space winds emitted by the supermassive black holes (SMBHs) at the center of active galactic nuclei (AGNs) – aka. “quasars.” These winds (with a fun name!) move close to the speed of light (relativistic speeds) and regulate the behavior of SMBHs during their active phase. These gas emissions are believed to fuel the process of star formation in galaxies but are not yet well understood. Astronomers are interested in learning more about them to improve our understanding of what governs galactic evolution.

This is the purpose of the SUper massive Black hole Winds in the x-rAYS (SUBWAYS) project, an international research effort dedicated to studying quasars using the ESA’s XMM-Newton space telescope. The first results of this project were shared by a group of scholars led by the University of Bologna and the National Institute for Astrophysics (INAF) in Italy. In the paper that describes their findings, the team presented X-ray spectroscopic data to characterize the properties of UFOs in 22 luminous galaxies.

Continue reading “Galactic Black Hole Winds Blow Up to a Third the Speed of Light. The Impact on Their Galaxies is Impressive.”

New Clues to the Formation of Globular Clusters: Their Ultramassive Stars

The scattered stars of the globular cluster NGC 6355 are strewn across this image from the NASA/ESA Hubble Space Telescope. This globular cluster lies less than 50,000 light-years from Earth in the Ophiuchus constellation. Image Credit: ESA/Hubble & NASA, E. Noyola, R. Cohen

Globular clusters are odd beasts. They aren’t galaxies, but like galaxies, they are a gravitationally bound collection of stars. They can contain millions of stars densely packed together, and they are old. Really old. They likely formed when the universe was only about 400 million years old. But the details of their origins are still unclear.

Continue reading “New Clues to the Formation of Globular Clusters: Their Ultramassive Stars”