Neptune's Cloud Cover is Linked to the Solar Cycle

This sequence of Hubble Space Telescope images chronicles the waxing and waning of the amount of cloud cover on Neptune. Credits: NASA, ESA, Erandi Chavez (UC Berkeley), Imke de Pater (UC Berkeley)

Whenever Neptune reaches its closest point in the sky to Earth, its portrait is taken by the Hubble Space Telescope and other ground-based observatories. Watching the planet from 1994 to 2020, astronomers have made puzzling discovery.

The clouds in Neptune’s atmosphere appear to be to be linked to the solar cycle and not the planet’s cycle of seasons. The global cloud cover seems to come and go in a cycle that apparently syncs up with the Sun’s 11-year cycle, as it shifts from solar maximum to solar minimum or vice versa. This is surprising since Neptune is so far from the Sun and receives about 0.1% of Earth’s sunlight.

Continue reading “Neptune's Cloud Cover is Linked to the Solar Cycle”

TESS Has Found Thousands of Possible Exoplanets. Which Ones Should JWST Study?

Artist rendition of a potential water-world exoplanet that might support advanced civilizations. Such life could advertise its existence via technosignatures from industrial or other activities. (Credit: ESA / Hubble / M. Kornmesser)
Artist rendition of a potential water-world exoplanet that might support life. Scientists could determine whether to explore this world based on its planetary entropy production. (Credit: ESA / Hubble / M. Kornmesser)

There are more than 5,000 confirmed exoplanets in our galaxy. That number is going to rise significantly in the next decade. The Transiting Exoplanet Survey Satellite (TESS) has already cataloged more than 4,000 candidate exoplanets, and the PLAnetary Transits and Oscillations of stars (PLATO) is scheduled to launch in 2026. We will soon have more than 10,000 worlds where life might be able to survive. It’s an amazing idea, but with so many exoplanets we don’t have the resources to search for life on all of them. So how do we prioritize our search?

Continue reading “TESS Has Found Thousands of Possible Exoplanets. Which Ones Should JWST Study?”

Over 100 Million Years Ago, Olympus Mons Had a Massive Landslide

This image from ESA’s Mars Express shows the wrinkled surroundings of Olympus Mons, the largest volcano not only on Mars but in the Solar System. This feature, created by previous landslides and lava-driven rockfalls, is named Lycus Sulci. Credit: ESA/DLR/FU Berlin.

While the surface of Mars looks relatively unchanging now, it wasn’t always so. The tallest mountain in the Solar System is Olympus Mons, a giant shield volcano on Mars that reaches 21.9 km (13.6 miles) high, 2.5 times higher than Mount Everest here on Earth. Ancient lava flows surround the volcanic caldera, evidence of an active time.

New images from ESA’s Mars Express show how these lava flows created extremely sharp cliffs, as high as 7 km (4.3 miles) in some areas, which suddenly collapsed in mind-boggling landslides. One of these landslides occurred several 100 million years ago when a chunk of the volcano broke off and spread across the surrounding plains. If we could look back in time and see as it happened, it was certainly a very dramatic and turbulent epoch on Mars.

Continue reading “Over 100 Million Years Ago, Olympus Mons Had a Massive Landslide”

Dr. Tracy Becker Honored with 2023 Carl Sagan Medal for Science Communication

2023 Carl Sagan Medal recipient, Dr. Tracy Becker, who is a group leader in the Southwest Research Institute’s Space Science Division. Dr. Becker is a planetary scientist whose research interests include remote observations of space phenomena such as the asteroid system shown here. (Credit: Southwest Research Institute)

This year’s prestigious Carl Sagan Medal, also known as the “Sagan Medal” and named after the late astronomer, Dr. Carl Sagan, has been awarded to Dr. Tracy Becker, who is a planetary scientist in the Space Science Division of the Southwest Research Institute (SwRI) in San Antonio, Texas. The Sagan Medal recipient is chosen by the Division for Planetary Sciences of the American Astronomical Society (AAS) and is meant to acknowledge planetary scientists who are not only active in science communication with the general public but have taken enormous strides in helping the general public better understand, and get excited for, the field of planetary science.

Continue reading “Dr. Tracy Becker Honored with 2023 Carl Sagan Medal for Science Communication”

Watch an Actual Exoplanet Orbit its Star for 17 Years

Artist rendition of exoplanet, Beta Pictoris b, whose partial orbit was recently featured in a time-lapsed video. (Credit: ESO L. Calçada/N. Risinger)

Searching for exoplanets is incredibly difficult given their literal astronomical distances from Earth, which is why a myriad of methods have been created to find them. These include transit, redial velocity, astrometry, gravitational microlensing, and direct imaging. It is this last method that was used to recently create a time-lapse video that compresses a mind-blowing 17 years of the partial orbit of exoplanet, Beta Pictoris b, into 10 seconds. The data to create the video was collected between 2003 and 2020, it encompasses approximately 75 percent of the total orbit, and marks the longest time-lapse video of an exoplanet ever produced.

Continue reading “Watch an Actual Exoplanet Orbit its Star for 17 Years”

NASA is Helping to Develop a Mach 4 Passenger Jet

Concept illustration of a Boeing high-supersonic commercial passenger aircraft. Credit: Boeing

The concept of supersonic transport (SST) has been a part of the commercial flight and aerospace sector since the 1970s. But as the Concorde demonstrated, the technology’s commercial viability has always been hampered by various challenges. For starters, supersonic planes must limit their speed to about 965 km/h (600 mph) over land to prevent damage caused by their sonic booms. Given the potential for flying from New York City to London in about 3.5 hours, which otherwise takes about 8 hours on average, aerospace engineers hope to overcome this problem.

Since 2006, the NASA Commercial Supersonic Technology Project (CSTP) has been researching SST as part of its QueSST mission and the X-59 quiet supersonic aircraft to reduce sonic booms, thus removing a crucial barrier to commercial development. Recently, NASA investigated whether commercial supersonic jets could theoretically travel from one major city to another at speeds between Mach 2 and 4 – 2,470 to 4,940 km/h (1,535 to 3,045 mph) at sea level. These studies concluded that there are potential passenger markets along 50 established routes, which could revolutionize air travel.

Continue reading “NASA is Helping to Develop a Mach 4 Passenger Jet”

Chandrayaan-3 Lands Successfully on the Moon’s South Pole

The Indian Space Research Organisation (ISRO) successfully landed its Chandrayaan-3 Lander Module on the surface of the Moon on August 23, 2023. Credit: ISRO

India’s space agency successfully landed their Chandrayaan-3 lander on the lunar surface, becoming the fourth country to touch down on the Moon and the first to land at one of the lunar poles.

The Indian Space Resource Organization’s (ISRO) Chandrayaan-3 launched last month and made a soft landing on the Moon’s south pole at approximately 8:34 a.m. ET on August 23. The mission is set to begin exploring an area of the Moon that is of extreme interest, but Chandrayaan-3 is the first to visit this area in-situ. The lunar south pole is thought to contain water ice that could be a source of oxygen, fuel, and water for future missions, or perhaps even for a future lunar base or colony.

Continue reading “Chandrayaan-3 Lands Successfully on the Moon’s South Pole”

The Irony. ClearSpace-1 Couldn't Clean up Space Debris Because its Target Already Got hit by Space Debris, Creating Even More Space Debris.

Illustration of ClearSpace-1 capturing a piece of space debris. Credit: ClearSpace

We have a problem.

Ever since the launch of Sputnik 1 in 1957, we have been launching debris into space. Everything from space stations and large communication satellites to small CubeSats. With each launch, we also add things such as rocket parts and paint chips to the orbital pile. Right now there are more than a million objects orbiting Earth wider than a centimeter, and at least 130 million millimeter-sized objects. Most of it isn’t going to deorbit any time soon.

Continue reading “The Irony. ClearSpace-1 Couldn't Clean up Space Debris Because its Target Already Got hit by Space Debris, Creating Even More Space Debris.”

The Most Compelling Places to Search for Life Will Look Like “Anomalies”

Will it be possible someday for astrobiologists to search for life "as we don't know it"? Credit: NASA/Jenny Mottar

In the past two and a half years, two next-generation telescopes have been sent to space: NASA’s James Webb Space Telescope (JWST) and the ESA’s Euclid Observatory. Before the decade is over, they will be joined by NASA’s Nancy Grace Roman Space Telescope (RST), Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx), and the ESA’s PLAnetary Transits and Oscillations of stars (PLATO) and ARIEL telescopes. These observatories will rely on advanced optics and instruments to aid in the search and characterization of exoplanets with the ultimate goal of finding habitable planets.

Along with still operational missions, these observatories will gather massive volumes of high-resolution spectroscopic data. Sorting through this data will require cutting-edge machine-learning techniques to look for indications of life and biological processes (aka. biosignatures). In a recent paper, a team of scientists from the Institute for Fundamental Theory at the University of Florida (UF-IFL) recommended that future surveys use machine learning to look for anomalies in the spectra, which could reveal unusual chemical signatures and unknown biosignatures.

Continue reading “The Most Compelling Places to Search for Life Will Look Like “Anomalies””

When the Sun Dies, it Could Produce a Fantastic Ring in Space, Like This New Image From JWST

The Ring Nebula seen by JWST's Near-Infrared Camera (left) and Mid-Infrared Instrument (right). Credit: ESA/Webb, NASA, CSA, M. Barlow (University College London), N. Cox (ACRI-ST), R. Wesson (Cardiff University)

Planetary nebulae were first discovered in the 1700s. Legend tells us that through the small telescopes of the time, they looked rather planet-like, hence the name. Real history is a bit more fuzzy, and early objects categorized as planetary nebulae included things such as galaxies. But the term stuck when applied to circular emission nebulae centered around a dying star. As new observations show, planetary nebulae have a structure that is both simple and complex.

Continue reading “When the Sun Dies, it Could Produce a Fantastic Ring in Space, Like This New Image From JWST”