What is a Subduction Zone?

Transform Plate Boundary
Tectonic Plate Boundaries. Credit:

IF you don’t know anything about plate tectonics you might be wondering about what is a subduction zone. A subduction zone is a region of the Earth’s crust where tectonic plates meet. Tectonic plates are massive pieces of the Earth’s crust that interact with each other. The places where these plates meet are called plate boundaries. Plate boundaries occur where plates separate, slide alongside each other or collide into each other. Subduction zones happen where plates collide.

When two tectonic plates meet it is like the immovable object meeting the unstoppable force. However tectonic plates decide it by mass. The more massive plate, normally a continental will force the other plate, an oceanic plate down beneath it. This is the subduction zone. When the other plate is forced down the process is called subduction. The plate enters into the magma and eventually it is completely melted. That is how the surface of the earth makes way for the crust created over time at other plate boundaries.

Subduction zones have key characteristics that help geologist and seismologist identify them. The first is mountain formation. Subduction zones always have mountain ranges caused by plate subduction. The next is volcanic activity as a plate is subducted the pressure and heat turns it into magma. These pockets of magma find paths to the surface and create volcanoes. A good example is the subduction zone near Chile. The final sign is deep marine trenches. These are the best evidence of a subduction zone as they are visible evidence of the crease formed by subduction of a plate. The most famous is the Mariana Trench.

There are some interesting theories about why Subduction occurs in the Earth’s crust. One common theory is that subduction was initiated by major impacts by asteroids or comets early in Earth’s history. This makes a lot of sense due to the geologic evidence of large impacts scattered around the world.

Understanding how subduction zones work is important because it helps scientist to identify areas of high volcanic and seismic activity. Monitoring these areas can help them warn people who live near them of imminent events and also people who could be affected by the side effects of such events such as ash clouds or tsunamis.

Subduction continues to be one of the most powerful and dynamic processes on planet Earth and as technology improves we can come to understand more about this amazing process.

We have written many articles about the subduction zone for Universe Today. For example, here is one on the Ring of Fire and plate boundaries.

You should also check out plate tectonics and subduction.

If you’d like more info on the subduction zone, check out the U.S. Geological Survey Website. And here’s a link to NASA’s Earth Observatory.

We’ve also recorded related episodes of Astronomy Cast about Plate Tectonics. Listen here, Episode 142: Plate Tectonics.

Sources:
http://en.wikipedia.org/wiki/Subduction
http://myweb.cwpost.liu.edu/vdivener/notes/subd_zone.htm

Subduction is a process in geology where one tectonic plates slides underneath another one and merges into the Earth’s mantle. The denser plate is the one that slips under the less dense plate; the younger plate is the less dense one. The process is not a smooth one. The tectonic plates grate against each other, which often causes earthquakes. The plate that slips under does not stay that way. Due to the heat caused by it rubbing against the other plate as well as the natural heat of the mantle, the plate melts and turns into magma. The area where subduction occurs is known as the subduction zone.

When one plate begins to slip underneath another one a trench is formed. The earthquakes that result due to the plates grinding against each other often cause magma to spill out through the trench in submarine volcanoes. Various formations such as mountain ranges, islands, and trenches are caused by subduction and the volcanoes and earthquakes it triggers. In addition to causing earthquakes, subduction can also trigger tsunamis.

When the older plate is holding a continent however, it does not sink, which is reassuring. Instead, the less dense material slips into a trench behind the denser oceanic crust where it gets stuck. The pressure continues to build until the trench flips over and the less dense plate slips underneath the one with the continent.

It is possible for a whole tectonic plate to disappear. This happens when the plate goes through subduction faster than new material can be added to the plate through seafloor spreading. The spreading pushes the plate slowly toward the subduction zone until the whole thing disappears. When this happens, the other tectonic plates rearrange to cover the area.

Subduction zones are mainly located in the Pacific Ocean. This is because seafloor spreading – the process by which new oceanic crust is created – occurs mostly in the Pacific. Thus the new material pushes the older plates outward and then they need to undergo subduction. This also explains why so many earthquakes originate in the Pacific Ocean near the Ring of Fire. That is where the subduction zones are concentrated.

Continental plates also converge, but this is not considered subduction because these plates do not have different densities and thicknesses to subduct. Landforms such as the Himalayas are formed from these convergences though.

 

Geomagnetic Reversal

Magnetic Field
Earth's magnetic field protects us from the solar wind. Image credit: NASA

[/caption]

Geomagnetic reversal is when the orientation of the Earth’s magnetic field becomes reversed. Thus, magnetic north and south switch places. The process is a gradual one though that can take thousands of years. The possibility that the magnetic field could reverse was first brought up in the early 1900’s. However, at this time scientists did not understand the Earth’s magnetic field very well so they were not interested in the concept of geomagnetic reversal. It was not until the 1950’s that scientists began a more in-depth study of geomagnetic reversal.

Scientists have not reached a consensus on what causes pole reversal. Some believe that it is simply an effect of the nature of the planet’s magnetic field. They base this hypothesis on the magnetic field lines’ tendency to move around and think that it becomes agitated enough to flip. Other scientists propose that external influences cause the shift. For example, a tectonic plate that undergoes subduction and goes into the Earth’s mantle may disturb the magnetic field enough to make it turn off. When the field restarts, it randomly chooses orientation, so it could shift.

 In order to better understand the process, scientists study past geomagnetic reversals. This is possible because the reversals have been recorded in minerals found in sedimentary deposits or hardened magma. Scientists have discovered that the magnetic field has actually reversed thousands of times. Scientists also discovered a record of reversals on the ocean floor.

The time between geomagnetic eruptions is not constant. One time, five reversals occurred over a period of a million years. Sometimes however, none happen for a very long time. These periods are known as superchrons. The last time a geomagnetic reversal occurred was 780,000 years ago and is referred to as the Brunhes-Matumaya reversal.

Geomagnetic reversal has also been linked to 2012. Some people believe that in 2012 when the Mayan calendar runs out we will experience some cataclysmic event that will destroy our world or life as we know it. There are various theories for exactly what this event is. One theory says that geomagnetic reversal will occur during 2012. Since the magnetic field is weaker at first when it switches, some claim that the Earth will be ravaged by solar rays. Scientists still have not determined what effects a geomagnetic reversal will have on humans; however, humans did survive the last reversal 780,000 years ago. One hypothesis is that the solar winds actually create a magnetic field sufficient enough to protect us while Earth’s magnetic field restarts.

Universe Today has articles on no geomagnetic reversal in 2012 and field reversal may take 7000 years.

For more information, you should check out geomagnetic flip may not be random and magnetic storm.

Astronomy Cast has an episode on magnetism everywhere.

Reference:
NASA: Earth’s Inconstant Magnetic Field

Angular Motion

You watch something (some distance from you) move … its direction changes … that’s angular motion. In other words, as measured from a fixed point (or axis), the angular motion of an object is the change in direction of the line (of sight) to the object; the angle swept by the line. Notice that if the distance to the object changes but the direction doesn’t, then there is no angular motion (though there is radial motion).

Standing on the surface of the Earth (and not moving, relative to the hills, valleys, etc), you see the Sun rise, move across the sky, and set. Ditto the Moon … and the stars, and the planets, and satellites like the ISS, and … “moving across the sky” simply means the direction of the Sun (the line from you to the Sun) changes, so that motion is angular motion.

Because it involves changes in angle, angular motion is measured in terms of degrees per second (or hour) … or radians per minute, or arcseconds per year, or … i.e. an angle per a unit of time.

Well, that’s one particular kind of angular motion, angular velocity (strictly we need to add a direction, to make it a velocity; in which way is the angle changing, due East perhaps?). There’s also angular acceleration, which is just like linear acceleration except that what the “per second per second” (or, perhaps, “per year per year”) refers to is an angle, not a length (or distance).

As the Earth turns on its axis once a day, and as a circle has 2π radians, the angular motion of the stars and the Sun is 2π rads/day, right? Well, close, but no cigar … the Earth also revolves around the Sun, so from one day to the next it has moved approximately 1/365-th of a complete circle, and as the Earth’s rotation is in the same direction as its orbit, the angular motion of the stars is a little bit less than 2π rads/day (it’s actually 2π radians per sidereal day!).

Many kinds of angular motion, in astronomy, have special names; for example, the angular motion of stars with respect to distant quasars (actually the fixed celestial coordinate system) is proper motion; the tiny ellipses (relatively) nearby stars seem to complete every year is parallax; and there’s precession, nutation, … and even the anomalous advance of the perihelion (of Mercury)! This last one is actually one component of a precession, but it played an important role in the history of physics (the first test the then new theory of general relativity passed); by the way, it’s only about 43″ (” = arcseconds) per century.

Wellesley College’s Phyllis Fleming has a 100-level concise intro to angular motion.

Some of the many Universe Today stories which involve angular motion are Globular Clusters Sort their Stars, and Does a Boomerang Work in Space?

Robots in Space

When it comes to exploring the hostile environment of space, robots have done a lot (if not most) of the exploring. The only other planet besides Earth that humans have set foot on is the Moon. Robotic explorers, however, have set down on the Moon, Mars, Venus, Titan and Jupiter, as well as a few comets and asteroids. Robotic missions can travel further and faster, and can return more scientific data than missions that include humans. There is much debate on whether the future of space exploration should rely solely on robots, or whether humans should have a role.

As contentious as this issue is, there is no doubt that robots have and will continue to contribute to our understanding of the Universe. Here’s a short list of past, current, and future robotic missions that have done or will do much in the way of exploration of our cosmos.Schematic of the Viking 1 Lander. Image Credit: The Mars Society

  • The most famous robots in space have to be the series of orbiters, rovers and landers that have been sent to Mars. The first orbiter was Mariner 4, which flew past Mars on July 14, 1965 and took the first close up photos of another planet. The first landers were the Viking landers. Viking 1 landed July 20, 1976, and Viking 2 on September 3, 1976. Both landers were accompanied by orbiters that took photos and scientific data from above the planet. The landers included instruments to detect for life on the surface of Mars, but the data they returned is somewhat ambiguous, and the question of whether there is life on Mars still requires an answer. Currently, Spirit and Opportunity are roving away on the Martian surface, well past their expected mission lifetime, and the Phoenix lander returned a wealth of information about our neighbor. For more about the entire series of Mars missions, go to NASA’s Mars Exploration Program website. Of course, NASA isn’t the only space organization represented at Mars – the European Space Agency currently has Mars Express orbiting the planet, and has the first webcam of another planet available!
  • Mars isn’t the only place to go in the Solar System, though. Both the U.S. and the Russians sent numerous missions to Mariner 1 and 2 made their way to Venus. Mariner 2 was the first successful Venus Flyby. Image Credit: JPLVenus, with a lot of successes and failures. For a complete list of the many missions to Venus visit the Planetary Society. The most notable firsts are: Mariner 2 was the first successful Venus flyby on December 14, 1962, and the Russian lander Venera 7 was the first human-made vehicle to successfully land on another planet and transmit data back to Earth on December 14, 1962.
  • Sputnik 1, of course, was  the first robot in space, and was launched October 4th, 1957 by the USSR.
  • The Voyager missions are notable for the milestone of having a robot leave the Solar System. Voyager 1 and 2 were launched in 1977 are still making their way out of the Solar System, and have entered the heliopause, where the solar wind starts to drop off, and the interstellar wind picks up. To keep up with their status, visit the weekly status page.
  • Dextre, a robotic arm developed by the Canadian Space Association, is a very cool robot aboard the International Space Station. Dexter allows for delicate manipulation of objects outside the station, reducing the number of space walks and increasing the ability of the ISS crew to maintain and upgrade the station.
  • There are many, many future robotic missions in the works and still in the “dreaming” stage. For example, submarines may one day explore Europa, landers may crawl on the Moon, and spacecraft will orbit comets.

This is by no means an exhaustive list of the enormous number of robotic space missions. To learn a lot, lot more check out the Astronomy Cast episode on Robots in Space, the ESA robotics page, NASA missions page, and the Planetary Society missions page.

Solving the Mystery of Cosmic Rays’ Origins

What accelerates cosmic rays to nearly the speed of light? Astronomer have pondered that question for nearly 100 years, and now new evidence supports a theory held for two decades that cosmic rays likely are powered by exploding stars and stellar winds. “This discovery has been predicted for almost 20 years, but until now no instrument was sensitive enough to see it,” said Wystan Benbow, an astrophysicist at the Smithsonian Astrophysical Observatory who coordinated this project for the Very Energetic Radiation Imaging Telescope Array System (VERITAS) collaboration.

Nearly 100 years ago, scientists detected the first signs of cosmic rays, which are actually not rays or beams but subatomic particles (mostly protons) that zip through space at nearly the speed of light. The most energetic cosmic rays hit with the punch of a 98-mph fastball, even though they are smaller than an atom. Astronomers questioned what natural force could accelerate particles to such a speed.

The rarest cosmic rays carry over 100 billion times as much energy as generated by any particle accelerator on Earth. Astronomers have devised ingenious methods for detecting cosmic rays that hit Earth’s atmosphere. However, detecting cosmic rays from a distance requires much more effort.

This representative-color figure shows the very-high-energy gamma-ray emission observed by VERITAS coming from the Cigar Galaxy, also known as Messier 82. The black star is the location of the active starburst region. The emission from M82 is effectively point-like for VERITAS, and the white circle indicates the size of a simulated point source. The entire galaxy would be contained within the circle. Credit: CfA/V.A. Acciari
This representative-color figure shows the very-high-energy gamma-ray emission observed by VERITAS coming from the Cigar Galaxy, also known as Messier 82. The black star is the location of the active starburst region. The emission from M82 is effectively point-like for VERITAS, and the white circle indicates the size of a simulated point source. The entire galaxy would be contained within the circle. Credit: CfA/V.A. Acciari

VERITAS has found new evidence for cosmic rays in the “Cigar Galaxy,” also known as Messier 82 (M82), which is located 12 million light-years from Earth in the direction of the constellation Ursa Major, which strongly support the long-held theory that supernovae and stellar winds from massive stars are the dominant accelerators of cosmic-ray particles.

Galaxies with high levels of star formation like M82, also known as “starburst” galaxies, have large numbers of supernovae and massive stars. If the theory holds, then starburst galaxies should contain more cosmic rays than normal galaxies. The VERITAS discovery confirms that expectation, indicating that the cosmic-ray density in M82 is approximately 500 times the average density in our Galaxy, the Milky Way.

“This discovery provides fundamental insight into the origin of cosmic rays,” said Rene Ong, a professor of physics at the University of California, Los Angeles, and the spokesperson for the VERITAS collaboration.

Using gamma rays to infer cosmic rays

VERITAS could not detect M82’s cosmic rays directly because they are trapped within the Cigar Galaxy. Instead, VERITAS looked for clues to the presence of cosmic rays: gamma rays. Gamma rays are the most energetic form of light, far more powerful than ultraviolet light or even X-rays. When cosmic rays interact with interstellar gas and radiation within M82, they produce gamma rays, which can then escape their home galaxy and reach Earthbound detectors.

It took two years of dedicated data collection to tease out the faint signal coming from M82.

“We knew that the detection of M82 would have important scientific implications. As a result, we scheduled an exceptionally long exposure immediately after the experiment became fully operational” said Benbow. “The data needed to be meticulously analyzed to extract the gamma-ray signal, which is over a million times smaller than the background noise. Although the signal is only a tiny fraction of the data, we made many checks for possible bias and we are confident that the signal is genuine.”

“The detection of M82 indicates that the universe is full of natural particle accelerators, and as ground-based gamma-ray observatories continue to improve, further discoveries are inevitable.” said Martin Pohl, a professor of physics at Iowa State University who helped lead the study. A next-generation VHE gamma-ray observatory, the Advanced Gamma-ray Imaging System (AGIS), is already under development.

VERITAS is operated by a collaboration of more than 100 scientists from 22 different institutions in the United States, Ireland, England and Canada. Click here for more information on VERITAS.

Lead image caption: A composite of multi-wavelength images of the active galaxy M82 from Hubble, Chandra, and Spitzer. Credit: NASA, ESA, CXC, and JPL-Caltech

Source: Harvard Smithsonian Center for Astrophysics

No Earth-Sized Planet Hunting for Kepler Until 2011

Artist concept of Kepler in space. Credit: NASA/JPL

[/caption]
A glitch in the Kepler spacecraft’s electronics means the space telescope will not have the ability to spot an Earth-sized planet until 2011, according to principal investigator William Borucki. Noisy amplifiers are creating noise that compromises Kepler’s view, and the team will have to generate and upload a software fix for the spacecraft. “We’re not going to be able to find Earth-size planets in the habitable zone — or it’s going to be very difficult — until that work gets done,” said Borucki, who revealed the problem last week to the NASA Advisory Council.

The team knew about the problem before launch, as the noisy amplifiers were noticed during ground testing before the device was launched. “Everybody knew and worried about this,” says instrument scientist Doug Caldwell. But he said the team thought it was riskier to pry apart the telescope’s electronic guts than to deal with the problem after launch.

Kepler launched on March 6, 2009 and is designed to look for the slight dimming of light that occurs when a planet transits, or crosses in front of a star.

The problem was is caused by amplifiers that boost the signals from the charge-coupled devices that form the heart of the 0.95-metre telescope’s 95-million-pixel photometer, which detects the light emitted from the distant stars. Three of the amplifiers are creating noise, and even though the noise affects only a small portion of the data, Borucki says, but the team has to fix the software — it would be “too cumbersome” to remove the bad data manually — so that it accounts for the noise automatically.

The team is hoping to fix the issue by changing the way data from the telescope is processed, and looks to have everything in place by 2011.

Borucki pointed out that the team was probably going to have to wait at least three years to find an extrasolar Earth orbiting in the habitable zone anyway. Astronomers typically wait for at least three transits before they confirm a planet’s existence; for an Earth-sized planet orbiting at a distance similar to that between the Earth and the Sun, three transits would take three years. But Borucki said that the noise will hinder searches for a rarer scenario: Earth-sized planets that orbit more quickly around dimmer, cooler stars — where the habitable zone is closer in. These planets could transit every few months.

The delay for Kepler could mean ground-based observers could now have the upper hand in the race for the holy grail of planet hunting: finding an Earth-like planet.

Kepler and CoRoT (Convection, Rotation and Planetary Transits) both look for transiting planets while the ground-based telescopes use radial velocity, looking for tiny wobbles in the motion of the parent stars caused by the planets’ gravity. The journal Nature quoted astronomer Greg Laughlin from the University of California at Santa Cruz, saying that the delay for Kepler makes it “more likely that the first Earth-mass planet is going to go to the radial-velocity observers”.

Source: Nature

Carnival of Space #127

This week’s Carnival of Space is hosted by Brian Wang over at The Next Big Future.

Click here to read the Carnival of Space #127.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, let Fraser know if you can be a host, and he’ll schedule you into the calendar.

Finally, if you run a space-related blog, please post a link to the Carnival of Space. Help us get the word out.

1 Milky Way; 3,000 Images

The Milky Way. Credit: Axel Mellinger

[/caption]
What a gorgeous and immense image! And it’s full of stars! An astronomer from Central Michigan University has put together a new high-resolution panoramic image of the full night sky , with the Milky Way galaxy as its centerpiece. Axel Mellinger stitched together over 3,000 images to create this beautiful image, which also comes in an interactive version, showing stars 1,000 times fainter than the human eye can see, as well as hundreds of galaxies, star clusters and nebulae.

View an interactive version at Mellinger’s website.

Mellinger spent 22 months and traveled over 26,000 miles to take digital photographs at dark sky locations in South Africa, Texas and Michigan. After the photographs were taken, “the real work started,” Mellinger said.

Simply cutting and pasting the images together into one big picture would not work. Each photograph is a two-dimensional projection of the celestial sphere. As such, each one contains distortions, in much the same way that flat maps of the round Earth are distorted. In order for the images to fit together seamlessly, those distortions had to be accounted for. To do that, Mellinger used a mathematical model—and hundreds of hours in front of a computer.

Another problem Mellinger had to deal with was the differing background light in each photograph.

“Due to artificial light pollution, natural air glow, as well as sunlight scattered by dust in our solar system, it is virtually impossible to take a wide-field astronomical photograph that has a perfectly uniform background,” Mellinger said.

To fix this, Mellinger used data from the Pioneer 10 and 11 space probes. The data allowed him to distinguish star light from unwanted background light. He could then edit out the varying background light in each photograph. That way they would fit together without looking patchy.

The result is an image of our home galaxy that no star-gazer could ever see from a single spot on earth. Mellinger plans to make the giant 648 megapixel image available to planetariums around the world.

Source: EurekAlert

Happy Halloween From Saturn

Happy Halloween from the Cassini team

[/caption]
The Cassini team posted this image today, sending “bats wishes” for a happy, healthy and fun Halloween. And this give all of us here at Universe Today a chance to wish everyone a fun, safe, almost-full-Moon-lit, eat-your-favorite-treats, happy Hallow’s Eve. Click the image for a larger version.

Also, as a heads up, Cassini will be flying by the moon Enceladus next week, on Nov. 2, approaching within about 100 kilometers (62 miles) of the surface. The spacecraft has gone closer during a previous flyby (25 kilometers or 15 miles), but this time it will be going deep into the heart of the plume from the geysers on the tiger-striped moon. The objective is to analyze the particles in the plume with instruments that can detect the size, mass, charge, speed and composition. This will happen at about 7:40 a.m. UTC and the spacecraft will spend only about a minute in the plume.