Ion Engines Could Take Us to the Solar Gravitational Lens in Less Than 13 Years

Sending an object to another star is still the stuff of science fiction. But some concrete missions could get us at least part way there. These “interstellar precursor missions” include a trip to the Solar Gravitational Lens point at 550 AU from the Sun – farther than any artificial object has ever been, including Voyager. To get there, we’ll need plenty of new technologies, and a recent paper presented at the 75th International Astronautical Congress in Milan this month looks at one of those potential technologies – electric propulsion systems, otherwise known as ion drives. 

Continue reading “Ion Engines Could Take Us to the Solar Gravitational Lens in Less Than 13 Years”

The First Triple Star System Found Containing a Black Hole

V404 Cygni in the process of consuming a nearby star while a second star orbits at a distance. Credit: Jorge Lugo

Neutron stars and black holes are the remnants of dead stars. They typically form as part of a supernova explosion, where the outer layers of an old star are violently cast off while the core of the star collapses to form the remnant. This violent origin can have significant consequences for both the remnant and the surrounding environment.

Continue reading “The First Triple Star System Found Containing a Black Hole”

Building Bricks out of Lunar Regolith

Samples of the lunar bricks. /China Media Group

It was 1969 that humans first set foot on the Moon. Now, over 50 years later we are setting sights on building lunar bases. The ability to complete that goal is dependent on either transporting significant amounts of material to the Moon to construct bases or somehow utilising raw lunar materials. A team of Chinese researchers have developed a technique to create bricks from material that is very similar to the soil found on the Moon. The hope is that the lunar soil can in the future, be used to build bricks on the Moon.

Continue reading “Building Bricks out of Lunar Regolith”

Life Can Maintain a Habitable Environment in Hostile Conditions

Astronomers have detected thousands of planets, including dozens that are potentially habitable. To winnow them down, they need to understand their atmospheres and other factors. (NASA Illustration)
Astronomers have detected thousands of planets, including dozens that are potentially habitable. To winnow them down, they need to understand their atmospheres and other factors. (NASA Illustration)

Everybody knows that for life to thrive on any world, you need water, warmth, and something to eat. It’s like a habitability mantra. But, what other factors affect habitability? What if you relaxed the conditions conducive to life? Would it still exist? If so, what would it be?

Continue reading “Life Can Maintain a Habitable Environment in Hostile Conditions”

How Bad Can Solar Storms Get? Ask the Trees

The study of tree rings may help prepare for space weather events that could threaten satellites and astronauts. Amy Hessl, professor of geography at WVU, is leading a project funded by the National Science Foundation.

One of the many threats facing space travellers and indeed our own planet is that of Solar Storms. At their most minor they can grant polar latitudes with a gentle auroral display but at their most extreme they can pose a threat to technology in space, communications and even our atmosphere. Now a team of researchers have found that extreme space weather can leave its mark in tree rings, leaving evidence that can help guard against future severe events. 

Continue reading “How Bad Can Solar Storms Get? Ask the Trees”

The Webb Discovers a Rich Population of Brown Dwarfs Outside the Milky Way

Near the outskirts of the Small Magellanic Cloud, a satellite galaxy roughly 200 000 light-years from Earth, lies the young star cluster NGC 602, which is featured in this new image from the NASA/ESA/CSA James Webb Space Telescope. This image includes data from Webb’s NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument). Image Credit: ESA/Webb, NASA & CSA, P. Zeidler, E. Sabbi, A. Nota, M. Zamani (ESA/Webb)

This stunning image of a star cluster in the Small Magellanic Cloud (SMC) is more than just a pretty picture. It’s part of a scientific effort to understand star formation in an environment different from ours. The young star cluster is called NGC 602, and it’s very young, only about 2 or 3 million years old.

Continue reading “The Webb Discovers a Rich Population of Brown Dwarfs Outside the Milky Way”

Neutron Stars May be Shrouded in Extremely Light Particles Called Axions

Image from a computer simulation of the distribution of matter in the universe. Orange regions host galaxies; blue structures are gas and dark matter. Credit: TNG Collaboration

Since the 1960s, astronomers have theorized that the Universe may be filled with a mysterious mass that only interacts with “normal matter” via gravity. This mass, nicknamed Dark Matter (DM), is essential to resolving issues between astronomical observations and General Relativity. In recent years, scientists have considered that DM may be composed of axions, a class of hypothetical elementary particles with low mass within a specific range. First proposed in the 1970s to resolve problems in the Standard Model of particle physics, these particles have emerged as a leading candidate for DM.

In addition to growing evidence that this could be the case, researchers at CERN are developing a new telescope that could help the scientific community look for axions – the CERN Axion Solar Telescope (CAST). According to new research conducted by an international team of physicists, these hypothetical particles may occur in large clouds around neutron stars. These axions could be the long-awaited explanation for Dark Matter that cosmologists have spent decades searching for. What’s more, their research indicates that these axions may not be very difficult to observe from Earth.

Continue reading “Neutron Stars May be Shrouded in Extremely Light Particles Called Axions”

NASA is Building Telescopes for the LISA Mission

NASA is supplying all six telescopes for their joint LISA mission with the ESA. In this image, a technician is inspecting a prototype in a clean room at the Goddard Space Flight Center. Image Credit: NASA/Dennis Henry

Some of the most cataclysmic and mysterious events in the cosmos only reveal themselves by their gravitational waves. We’ve detected some of them with our ground-based detectors, but the size of these detectors is limited. The next step forward in gravitational wave (GW) astronomy is a space-based detector: LISA, the Laser Interferometer Space Antenna.

Continue reading “NASA is Building Telescopes for the LISA Mission”

There's a Particle Accelerator at the Center of the Milky Way

Gamma ray emissions in the center of the Milky Way. Credit: Albert, et al

Nestled on the slopes of Cerro La Negra at an elevation of 13,000 feet is an unusual-looking observatory. Known as the High-Altitude Water Cherenkov (HAWC) observatory, it looks like a tightly packed collection of grain silos, which is essentially what it is. But rather than holding grain, the silos are each filled with 188,000 liters of water and four photomultiplier tubes. While it’s an unusual setup, it’s what you need to observe high-energy gamma rays from deep space.

Continue reading “There's a Particle Accelerator at the Center of the Milky Way”

New Research Reveals Provides Insight into Mysterious Features on Airless Worlds

Artist's rendition of the Dawn mission on approach to the protoplanet Ceres. Credit: NASA/JPL

Between 2011 and 2018, NASA’s Dawn mission conducted extended observations of Ceres and Vesta, the largest bodies in the Main Asteroid Belt. The mission’s purpose was to address questions about the formation of the Solar System since asteroids are leftover material from the process, which began roughly 4.5 billion years ago. Ceres and Vesta were chosen because Ceres is largely composed of ice, while Vesta is largely composed of rock. During the years it orbited these bodies, Dawn revealed several interesting features on their surfaces.

This included mysterious flow features similar to those observed on other airless bodies like Jupiter’s moon Europa. In a recent study, Michael J. Poston, a researcher from the Southwest Research Institute (SWRI), recently collaborated with a team at NASA’s Jet Propulsion Laboratory to attempt to explain the presence of these features. In the paper detailing their findings, they outlined how post-impact conditions could temporarily produce liquid brines that flow along the surface, creating curved gullies and depositing debris fans along the impact craters’ walls.

Continue reading “New Research Reveals Provides Insight into Mysterious Features on Airless Worlds”