Comets have long been seen as omens and portents, and it’s easy to understand why. They first appear as faint smudges of light in the sky, sometimes fading soon after and sometimes becoming brighter than the planets, with a long, glowing tail. They have been observed throughout human history, but it wasn’t until the eighteenth century that astronomers began to predict the return of some comets. Even today, we can’t predict the return of most comets until after they swing through the inner solar system. If such a comet happens to be heading toward Earth, we wouldn’t know about it until too late. But that could change thanks to our observations of meteor showers.
Continue reading “Astronomers Predict the Orbits of Potentially Hazardous Comets From Meteor Showers”Amazing Reader Views of Comet A3 Tsuchinshan-ATLAS From Around the World
Comet C/2023 A3 Tsuchinshan-ATLAS survived perihelion to become a fine dusk object for northern hemisphere observers.
It was an amazing month for astronomy. Not only were we treated to an amazing second solar storm for 2024 that sent aurorae as far south as the Caribbean, but we had a fine naked eye comet: C/2023 A3 Tsuchinshan-ATLAS.
Continue reading “Amazing Reader Views of Comet A3 Tsuchinshan-ATLAS From Around the World”Astronomer Calculates When van Gogh Painted This
One of my favorite paintings is Starry Night by Vincent van Gogh — for obvious astronomical reasons. But another favorite of van Gogh’s works is Lane of Poplars at Sunset. This painting depicts the setting Sun perfectly aligned with a long lane of trees, casting long shadows.
The geometry of the Earth and Sun means that this scene had to be painted on one specific day of the year when the alignment would be possible. An astronomer has now used 19th-century maps to discover where the lane was, and then used astronomical calculations to determine which date the Sun would be in the exact position as the painting. His result? The painting depicts a stretch of road known as Weverstraat in the Dutch town of Nuenen, on November 13 or 14, 1884.
Continue reading “Astronomer Calculates When van Gogh Painted This”Artemis V Astronauts Will be Driving on the Moon
In the summer of ’69, Apollo 11 delivered humans to the surface of the Moon for the first time. Neil Armstrong and Buzz Aldrin spent just over two hours exploring the area near their landing site on foot. Only during Apollo 15, 16, and 17 did astronauts have a vehicle to move around in.
Artemis astronauts on the Moon will have access to a vehicle right away, and NASA is starting to test a prototype.
Continue reading “Artemis V Astronauts Will be Driving on the Moon”Tiny Fragments of a 4-Billion Year Old Asteroid Reveal Its History
In June 2018, Japan’s Hayabusa 2 mission reached asteroid 162173 Ryugu. It studied the asteroid for about 15 months, deploying small rovers and a lander, before gathering a sample and returning it to Earth in December 2020.
The Ryugu sample contains some of the Solar System’s most ancient, primitive, and unaltered material, opening a window into its earliest days about 4.6 billion years ago.
Continue reading “Tiny Fragments of a 4-Billion Year Old Asteroid Reveal Its History”Astronomers Have Found the Fastest Spinning Neutron Star
Neutron stars are as dense as the nucleus of an atom. They contain a star’s worth of matter in a sphere only a dozen kilometers wide. And they are light-years away. So how can we possibly understand their interior structure? One way would be to simply spin it. Just spin it faster and faster until it reaches a maximum limit. That limit can tell us about how neutron stars hold together and even how they might form. Obviously, we can’t actually spin up a neutron star, but it can happen naturally, which is one of the reasons astronomers are interested in these maximally spinning stars. And recently a team has discovered a new one.
Continue reading “Astronomers Have Found the Fastest Spinning Neutron Star”Astronomers Discover Potential New Building Block of Organic Matter in Interstellar Space
Carbon is the building block for all life on Earth and accounts for approximately 45–50% of all dry biomass. When bonded with elements like hydrogen, it produces the organic molecules known as hydrocarbons. When bonded with hydrogen, oxygen, nitrogen, and phosphorus, it produces pyrimidines and purines, the very basis for DNA. The carbon cycle, where carbon atoms continually travel from the atmosphere to the Earth and back again, is also integral to maintaining life on Earth over time.
As a result, scientists believe that carbon should be easy to find in space, but this is not always the case. While it has been observed in many places, astronomers have not found it in the volumes they would expect to. However, a new study by an international team of researchers from the Massachusetts Institute of Technology (MIT) and the Harvard-Smithsonian Center for Astrophysics (CfA) has revealed a new type of complex molecule in interstellar space. Known as 1-cyanoprene, this discovery could reveal where the building blocks of life can be found and how they evolve.
Continue reading “Astronomers Discover Potential New Building Block of Organic Matter in Interstellar Space”There’s Another Ocean Moon Candidate: Uranus’ Tiny Moon Miranda
The Solar System’s hundreds of moons are like puzzle pieces. Together, they make a picture of all the forces that can create and modify them and the forces that shape our Solar System. One of them is Miranda, one of 28 known moons that orbit the ice giant Uranus. Miranda is its smallest major moon, at 471 km in diameter.
New research shows that this relatively small, distant moon may be hiding something: a subsurface ocean.
Continue reading “There’s Another Ocean Moon Candidate: Uranus’ Tiny Moon Miranda”Titan May Have a Methane Crust 10 Km Thick
Saturn’s moon, Titan, is an anomaly among moons. No other moons have surface liquids, and aside from Earth, it’s the only other Solar System object with liquids on its surface. However, since Titan is so cold, the liquids are hydrocarbons, not water. Titan’s water is all frozen into a surface layer of ice.
New research suggests that under the surface, Titan is hiding another anomaly: a thick crust of methane.
Continue reading “Titan May Have a Methane Crust 10 Km Thick”Death of a Comet: S1 Didn’t Survive its Sungrazing Plummet
Sungrazer C/2024 S1 ATLAS broke apart at perihelion.
Alas, a ‘Great Halloween Comet’ was not to be. The Universe teased us just a bit this month, with the potential promise of a second naked eye comet in October: C/2024 S1 ATLAS. Discovered on the night of September 27th by the Asteroid Terrestrial Last-alert impact System (ATLAS) all-sky survey, this inbound comet was surprisingly bright and active for its relative distance from the Sun at the time of discovery. This gave the comet the potential to do what few sungrazers have done: survive a blisteringly close perihelion passage near the Sun.
Continue reading “Death of a Comet: S1 Didn’t Survive its Sungrazing Plummet”