Dark Matter: Why study it? What makes it so fascinating?

Universe Today has had some incredible discussions with a wide array of scientists regarding impact craters, planetary surfaces, exoplanets, astrobiology, solar physics, comets, planetary atmospheres, planetary geophysics, cosmochemistry, meteorites, radio astronomy, extremophiles, organic chemistry, black holes, cryovolcanism, and planetary protection, and how these intriguing fields contribute to our understanding regarding our place in the cosmos. …

Another Strike Against Primordial Black Holes as an Explanation for Dark Matter

The quest to understand dark matter has taken many twists and turns. It’s a scientific tale but also a human one. We know there’s a missing mass problem, but astrophysicists and cosmologists can’t figure out what the missing matter is. One of the most interesting potential solutions is primordial black holes (PBHs). However, new research …

A New Way to Prove if Primordial Black Holes Contribute to Dark Matter

The early Universe was a strange place. Early in its history—in the first quintillionth of a second—the entire cosmos was nothing more than a stunningly hot plasma. And, according to researchers at the Massachusetts Institute of Technology (MIT), this soup of quarks and gluons was accompanied by the formation of weird little primordial black holes …

Evidence of Dark Matter Interacting With Itself in El Gordo Merger

The Standard Model of particle physics does a good job of explaining the interactions between matter’s basic building blocks. But it’s not perfect. It struggles to explain dark matter. Dark matter makes up most of the matter in the Universe, yet we don’t know what it is. The Standard Model says that whatever dark matter …

Neutron Stars Could be Heating Up From Dark Matter Annihilation

Astronomers have an intriguing idea for searching for dark matter, measuring the effect of particle self-annihilation inside various astronomical objects, from planets to stars and even white dwarfs. Now, astronomers are suggesting that dark matter annihilation should have a noticeable effect on the temperature of neutron stars. Dark matter could be collecting inside the intense gravity wells of neutron stars, annihilating and making them hotter than they should be.

A New Tabletop Experiment to Search for Dark Matter

What is Dark Matter? We don’t know. At this stage of the game, scientists are busy trying to detect it and map out its presence and distribution throughout the Universe. Usually, that involves highly-engineered, sophisticated telescopes. But a new approach involves a device so small it can sit on a kitchen table.

Dwarf Galaxies Could be the Key to Explaining Dark Matter

If dark matter is a particle, it’s possible that it could self-annihilate, becoming normal matter and releasing gamma radiation. Dwarf galaxies are the best objects to search for this radiation because they’re small, rich in dark matter, and don’t have other phenomena that could contaminate the view. A new survey examined 50 dwarf galaxies orbiting the Milky Way and saw a faint hint of gamma radiation that could be coming from dark matter annihilation.

Webb Can Directly Test One Theory for Dark Matter

What is it about galaxies and dark matter? Most, if not all galaxies are surrounded by halos of this mysterious, unknown, but ubiquitous material. And, it also played a role in galaxy formation. The nature of that role is something astronomers are still figuring out. Today, they’re searching the infant Universe, looking for the tiniest, …