How Oumuamua Changes Our Perspective on Galactic Panspermia

Artist’s impression of the first interstellar asteroid/comet, "Oumuamua". This unique object was discovered on 19 October 2017 by the Pan-STARRS 1 telescope in Hawaii. Credit: ESO/M. Kornmesser

Panspermia is an innately attractive idea that’s gained prominence in recent decades. Yet, among working scientists, it gets little attention. There are good reasons for their relative indifference, but certain events spark renewed interest in panspermia, even among scientists.

The appearance of Oumuamua in our Solar System in 2017 was one of them.

Continue reading “How Oumuamua Changes Our Perspective on Galactic Panspermia”

A New Model Explains How Gas and Ice Giant Planets Can Form Rapidly

Artist's impression of a young star surrounded by a protoplanetary disc made of gas and dust. According to new research, ring-shaped, turbulent disturbances (substructures) in the disk lead to the rapid formation of several gas and ice giants. Credit: LMU / Thomas Zankl, crushed eyes media

The most widely recognized explanation for planet formation is the accretion theory. It states that small particles in a protoplanetary disk accumulate gravitationally and, over time, form larger and larger bodies called planetesimals. Eventually, many planetesimals collide and combine to form even larger bodies. For gas giants, these become the cores that then attract massive amounts of gas over millions of years.

But the accretion theory struggles to explain gas giants that form far from their stars, or the existence of ice giants like Uranus and Neptune.

Continue reading “A New Model Explains How Gas and Ice Giant Planets Can Form Rapidly”

A Unique Combination of Antennas Could Revolutionize Remote Sensing

Bigger antennas are better, at least according to researchers interested in geospatial monitoring. That’s because higher resolution in monitoring applications requires larger apertures. So imagine the excitement in the remote sensing community when a researcher from Leidos, a government consulting firm, developed an idea that dramatically increased the effective aperture size of a remote radio-frequency monitoring system simply by tying a rotating antenna to a flat “sparse” array. That’s exactly what Dr. John Kendra did, and it has garnered him not only two NASA Institute for Advanced Concepts (NIAC) grants to advance the technology but also a prize paper award at a technical conference on remote sensing. In other words, if implemented correctly, the Rotary-Motion Extended Array Synthesis (R-MXAS) technology could be a game changer for remote sensing applications.

Continue reading “A Unique Combination of Antennas Could Revolutionize Remote Sensing”

Why is the Sun’s Corona So Hot? One Hypothesis Down, Many to Go

Illustration of NASA’s Parker Solar Probe flying through a magnetic switchback from the Sun, with scientists still debating the origin of switchbacks within the Sun. (Credit: Adriana Manrique Gutierrez/NASA’s Goddard Space Flight Center)

The temperature of the Sun’s corona is a minimum of 100 times hotter than the Sun’s surface, despite the corona being far less dense and extending millions of miles from the Sun’s surface, as well. But why is this? Now, a recent study published in The Astrophysical Journal could eliminate a longstanding hypothesis regarding the processes responsible for the corona’s extreme heat, which could help them better understand the Sun’s internal processes. This study holds the potential to help scientists gain greater insight into the formation and evolution of our Sun, which could lead to better understanding stars throughout the universe, as well.

Continue reading “Why is the Sun’s Corona So Hot? One Hypothesis Down, Many to Go”

A New Study Shows How our Sun Could Permantly Capture Rogue Planets!

This illustration shows a rogue planet traveling through space. Credit: NASA/JPL-Caltech/R. Hurt (Caltech-IPAC)

Interest in interstellar objects (ISOs) was ignited in 2017 when ‘Oumuamua flew through our Solar System and made a flyby of Earth. Roughly two years later, another ISO passed through our Solar System – the interstellar comet 2I/Borisov. These encounters confirmed that ISOs are not only very common, but pass through our Solar System regularly – something that astronomers have suspected for a long time. Even more intriguing is that some of these objects are captured and can still be found orbiting our Sun.

In a recent study, a team of researchers described a region in the Solar System where objects can be permanently captured from interstellar space. Their analysis determined that once objects are captured by our Sun’s gravitational pull and fall into this region—which could include comets, asteroids, and even rogue planets—they will remain in orbit around the Sun and not collide with it. These findings could have drastic implications for ISO studies and proposed missions to rendezvous with some of these objects in the near future.

Continue reading “A New Study Shows How our Sun Could Permantly Capture Rogue Planets!”

This Binary Asteroid is Messed Up. It’s Probably Earth’s Fault

Radar images of 1991 VH and its satellite by Arecibo Observatory in 2008

Space is big, really big! Finding new asteroids which are usually dark against the inky blackness of space is harder than looking for a needle in a cosmic haystack. Back in 1991 an astronomer discovered a kilometre wide asteroid which was subsequently found to have a smaller moon half its size. It was given the snappy name of 1991 VH which , after follow up observations was revealed to have a tumbling, chaotic rotation. This was the first binary asteroid that has been seen to exhibit this behaviour. A paper just published suggests that a close encounter with Earth as recently as 12,000 years ago could have started its tumbling motion. 

Continue reading “This Binary Asteroid is Messed Up. It’s Probably Earth’s Fault”

Starliner Successfully Fires its Thrusters, Preparing to Return to Earth

Boeing’s Starliner crew capsule docked to the Harmony module’s forward port at the International Space Station on July 6, 2024. Photo credit: NASA

Being trapped in space sounds like the stuff of nightmares. Astronauts on board the International Space Station have on occasion, had their return delayed by weather or equipment malfunction. We find ourselves again, watching and waiting as two astronauts; Juni Williams and Butch Wilmore have been stuck for months instead of their week long mission. The delays came as the Starliner system required fixes to be implemented. NASA successfully fired up 27 of its 28 thrusters in a hot-firing test and now, ground teams are preparing finally, to bring them home.

Continue reading “Starliner Successfully Fires its Thrusters, Preparing to Return to Earth”

Astronomers Uncover New Details in the Brightest Gamma Ray Burst Ever Detected

Artist's depiction of a powerful gamma ray burst. Credit: NASA, ESA and M. Kornmesser

In October 2022, the Fermi Gamma-ray Space Telescope and the Neil Gehrels Swift Observatory detected an extraordinarily powerful Gamma Ray Burst (GRB). It still stands as the Brightest Of All Time (BOAT), and astronomers have been curious about it ever since.

New research has uncovered more details in the burst. What do they tell us about these forceful explosions?

Continue reading “Astronomers Uncover New Details in the Brightest Gamma Ray Burst Ever Detected”

Predicting Solar Storms Before They Leave the Sun

Solar storms called coronal mass ejections erupt from the Sun. Scientists now think they can predict the speed of these storms. NASA Goddard Space Flight Center.

When giant solar storms hit Earth, they trigger beautiful auroral displays high in Earth’s atmosphere. There’s a dark side to this solar activity, though. The “space weather” it sets off also threatens our technology. The potential for damage is why we need highly accurate predictions of just when these storms will impact our planet’s magnetosphere.

Continue reading “Predicting Solar Storms Before They Leave the Sun”

How to SUPPPPRESS Light From a Star That Is Ten Billion Times Brighter Than Its Habitable Exoplanet

This artist’s concept features one of multiple initial possible design options for NASA’s Habitable Worlds Observatory. Credits: NASA’s Goddard Space Flight Center Conceptual Image Lab

Searching for Earth 2.0 has been an obsession of almost all exoplanet hunters since the discipline’s dawn a few decades ago. Since then, they’ve had plenty of technological breakthroughs help them in their quest, but so far, none of them have been capable of providing the clear-cut image needed to prove the existence of an exo-Earth. However, some of those technologies are undoubtedly getting closer, and one of the most interesting is utilizing a system called a multi-grated vector vortex coronagraph (mgVVC). Researchers funded by ESA think it may hold the optical properties to enable space-based telescopes like the Habitable Worlds Observatory (HWO) to finally capture the holy grail of exoplanet hunting – and it may be ready for prime time as early as next year.

Continue reading “How to SUPPPPRESS Light From a Star That Is Ten Billion Times Brighter Than Its Habitable Exoplanet”