Could a Black Hole Fit in Your Computer or In Your Pocket?

Artist's illustration of a supermassive black hole. Image credit: NASA

[/caption]
Some of the most frequently asked questions we get here at Universe Today and Astronomy Cast deal with black holes. Everyone wants to know what conditions would be like at the event horizon, or even inside a black hole. Answering those questions is difficult because so much about black holes is unknown. Black holes can’t be observed directly because their immense gravity won’t let light escape. But in just the past week, three different research teams have released their findings in their attempts to create black holes – or at least conditions analogous to them to advance our understanding.

Make Your Own Accretion Disk

A team of researchers from Osaka University in Japan wanted to sharpen their insights into the behavior of matter and energy in extreme conditions. What could be more extreme than the conditions of the swirling cloud of matter surrounding a black hole, known as the accretion disk? Their unique approach was to blast a plastic pellet with high-energy laser beams.

Accretion disks get crunched and heated by a black hole’s gravitational energy. Because of this, the disks glow in x-ray light. Analyzing the spectra of these x-rays gives researchers clues about the physics of the black hole.

However, scientists don’t know precisely how much energy is required to produce such x-rays. Part of the difficulty is a process called photoionization, in which the high-energy photons conveying the x-rays strip away electrons from atoms within the accretion disk. That lost energy alters the characteristics of the x-ray spectra, making it more difficult to measure precisely the total amount of energy being emitted.
After being hit with laser beams, a small plastic pellet (sunlike object) emits x-rays, some of which bombard a pellet of silicon (blue and purple).  Credit: Adapted from S. Fujioka et al., Nature Physics, Advance Online Publication
To get a better handle on how much energy those photoionized atoms consume, researchers zapped a tiny plastic pellet with 12 laser beams fired simultaneously and allowed some of the resulting radiation to blast a pellet of silicon, a common element in accretion disks.

The synchronized laser strikes caused the plastic pellet to implode, creating an extremely hot and dense core of gas, or plasma. That turned the pellet into “a source of [immensely powerful] x-rays similar to those from an accretion disk around a black hole,” says physicist and lead author Shinsuke Fujioka. The team said the x-rays photoionized the silicon, and that interaction mimicked the emissions observed in accretion disks. By measuring the energy lost from the photoionization, the researchers could measure total energy emitted from the implosion and use it to improve their understanding of the behavior of x-rays emitted by accretion disks.

The Portable Black Hole

Another group of physicists created a tiny device that can create a black hole by sucking up microwave light and converting it into heat. At just 22 centimeters across, the device can fit in your pocket.

The device uses ‘metamaterials’, specially engineered materials that can bend light in unusual ways. Previously, scientists have used such metamaterials to build ‘invisibility carpets’ and super-clear lenses. This latest black hole was made by Qiang Chen and Tie Jun Cui of Southeast University in Nanjing, China.

Real black holes use their huge mass to warp space around it. Light that travels too close to it can become trapped forever.

Metamaterial device that can create a black hole. Credit: Qiang Chen and Tie Jun Cui
Metamaterial device that can create a black hole. Credit: Qiang Chen and Tie Jun Cui

The new meta-black hole also bends light, but in a very different way. Rather than relying on gravity, the black hole uses a series of metallic ‘resonators’ arranged in 60 concentric circles. The resonators affect the electric and magnetic fields of a passing light wave, causing it to bend towards the centre of the hole. It spirals closer and closer to the black hole’s ‘core’ until it reaches the 20 innermost layers. Those layers are made of another set of resonators that convert light into heat. The result: what goes in cannot come out. “The light into the core is totally absorbed,” Cui said.

Not only is the device useful in studying black holes, but the research team hopes to create a version of the device that will suck up light of optical frequencies. If it works, it could be used in applications such as solar cells.

Read their paper here.

Black holes in your computer?

A supercomputer.
A supercomputer.

Could you create a black hole in your computer? Maybe if you had a really big one. Scientists at Rochester Institute of Technology (RIT) hope to make use of two of the fastest supercomputers in the world in their quest to “shine light” on black holes. The team was approved for grants and computing time to study the evolution of black holes and other objects with the “NewHorizons,” a cluster consisting of 85 nodes with four processors each, connected via an Infiniband network that passes data at 10-gigabyte-per-second speeds.

The team has created computer algorithms to simulate with mathematics and computer graphics what cannot be seen directly.

“It is a thrilling time to study black holes,” said Manuela Campanelli, center director. “We’re nearing the point where our calculations will be used to test one of the last unexplored aspects of Einstein’s General Theory of Relativity, possibly confirming that it properly describes the strongest gravitational fields in the universe.”

Sources: Science, Astronomy Magazine Technology Review Blog

Skies Sparkle For Both Hemispheres – The Annual Orionid Meteor Shower!

It’s not often that both hemispheres of the Earth get treated to an annual meteor shower, but in a matter of hours the complex Orionid stream is heading to dark sky your way! Where and when do you watch? Will it be as good as this year’s Perseids as filmed by John Chumack above? Try even better! Follow me…

We are now slipping into the stream of Comet Halley and one of the finest meteor showers of the year. If skies are clear tonight, this would be the perfect chance to begin observations of the Orionid meteor shower. But get to bed early and rise well before dawn to enjoy one of the year’s most reliable meteor showers. The offspring of Comet Halley grace the early morning hours as they return as the Orionid meteor shower. This dependable shower produces an average of 10-20 meteors per hour maximum, and best activity begins before local midnight on the 20th, and reaches its peak as Orion stands high to the south about two hours before local dawn the 21st. With only the tiniest crescent of a Moon gone in the early evening, this looks to be the year’s premier meteor shower!

Although Comet Halley has now departed the inner Solar System, its debris trail remains well organized – allowing us to predict when this meteor shower will occur. The Earth first enters the stream at the beginning of October and does not leave until the beginning of November. This makes your chances of “catching a falling star” above average! These meteors are very fast, and although faint, occasional fireballs do leave persistent trails.

For best success, get away from city lights. Face south-southeast in the northern hemisphere and almost overhead in the southern – then relax and enjoy the stars of the Winter Milky Way. The radiant is near Betelguese, but may occur from any part of the sky. The meteor watching experience is much more comfortable if you include a lawn chair, blanket, and thermos of your favorite beverage.


Orionid Meteor Shower – Key Points

  • The nights of October 21st and 22nd are the best times to watch.
  • Maximum hours rates are typically 20/hr and meteors are described as “fast”.
  • The radiant is at RA=06h20m, DEC=+16o, just above the left shoulder of Orion.
  • The average magnitude of an Orionid meteor is 3.

Clouded out? Don’t despair. You don’t always need eyes or perfect weather to keep the watch. Tune an FM radio to the lowest frequency that doesn’t receive a clear signal. An outdoor FM antenna pointed to the zenith increases your chances – but isn’t essential. Simply turn up the static and listen. Those hums, whistles, beeps, bongs, and occasional snatches of signals are distant transmissions being reflected off a meteor’s ion trail!

Sky Chart Courtesy of NASA.

IYA Live Telescope: Mmmm, Mmmmm, Good!

If you’ve had an opportunity over the last few days to check in on our IYA “Live” Telescope, we’ve been keeping an eye on the Messier Catalog Objects for you… specifically some bright open clusters named M46, M47 and M48! If you didn’t get a chance to catch them while they were on the air, then feel free to have a look at our video capture…

Messier 46 (also known as M 46 or NGC 2437) is an open cluster in the constellation of Puppis. It was discovered by Charles Messier in 1771. Dreyer described it as “very bright, very rich, very large.” M46 is about 5,500 light-years away with an estimated age on the order of several 100 million years.

The planetary nebula NGC 2438 appears to lie within the cluster near its northern edge (the faint smudge at the top center of the image), but it is most likely unrelated since it does not share the cluster’s radial velocity.[1][2] The case is yet another example of a superposed pair, joining the famed case of NGC 2818. M46 is about a degree east of M47 in the sky, so the two fit well in a binocular or wide-angle telescope field.

Ready for the next? Let’s go….

Open Cluster M47 (also known as Messier Object 47 or NGC 2422) is an open cluster in the constellation Puppis. It was discovered by Giovanni Batista Hodierna before 1654 and independently discovered by Charles Messier on February 19, 1771.

M47 is at a distance of about 1,600 light-years from Earth with an estimated age of about 78 million years. There are about 50 stars in this cluster, the brightest one being of magnitude +5.7.

And before we go…

Messier 48 (also known as M 48 or NGC 2548) is an open cluster in the Hydra constellation. It was discovered by Charles Messier in 1771.

M48 is visible to the naked eye under good atmospheric conditions. Its age is estimated to amount 300 million years.

As always, check when you have an opportunity to catch the IYA “Live” telescope in action!

Factual information courtesy of Wikipedia.

Carnival of Space #125

This week’s Carnival of Space is hosted by Robert Simpson over at Orbiting Frog.

Click here to read the Carnival of Space #125.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, let Fraser know if you can be a host, and he’ll schedule you into the calendar.

Finally, if you run a space-related blog, please post a link to the Carnival of Space. Help us get the word out.

Organic Molecules Detected in Exoplanet Atmosphere

Artist concept of exoplanet HD 209458b. Credit: NASA/JPL-Caltech/T. Pyle (SSC)

[/caption]

The basic chemistry for life has been detected the atmosphere of a second hot gas planet, HD 209458b. Data from the Hubble and Spitzer Space Telescopes provided spectral observations that revealed molecules of carbon dioxide, methane and water vapor in the planet’s atmosphere. The Jupiter-sized planet – which occupies a tight, 3.5-day orbit around a sun-like star — is not habitable but it has the same chemistry that, if found around a rocky planet in the future, could indicate the presence of life. Astronomers are excited about the detection, as it shows the potential of being able to characterize planets where life could exist.

HD 209458b is in the constellation Pegasus.

“It’s the second planet outside our solar system in which water, methane and carbon dioxide have been found, which are potentially important for biological processes in habitable planets,” said researcher Mark Swain of JPL. “Detecting organic compounds in two exoplanets now raises the possibility that it will become commonplace to find planets with molecules that may be tied to life.”

Over a year ago, astronomers detected these same organic molecules in the atmosphere of another hot, giant planet, called HD 189733b, using the same two space telescopes. Astronomers can now begin comparing the chemistry and dynamics of these two planets, and search for similar measurements of other candidate exoplanets.

The detections were made through spectroscopy, which splits light into its components to reveal the distinctive spectral signatures of different chemicals. Data from Hubble’s near-infrared camera and multi-object spectrometer revealed the presence of the molecules, and data from Spitzer’s photometer and infrared spectrometer measured their amounts.

“This demonstrates that we can detect the molecules that matter for life processes,” said Swain. Astronomers can now begin comparing the two planetary atmospheres for differences and similarities. For example, the relative amounts of water and carbon dioxide in the two planets is similar, but HD 209458b shows a greater abundance of methane than HD 189733b. “The high methane abundance is telling us something,” said Swain. “It could mean there was something special about the formation of this planet.”

Rocky worlds are expected to be found by NASA’s Kepler mission, which launched earlier this year, but astronomers believe we are a decade or so away from being able to detect any chemical signs of life on such a body.

If and when such Earth-like planets are found in the future, “the detection of organic compounds will not necessarily mean there’s life on a planet, because there are other ways to generate such molecules,” Swain said. “If we detect organic chemicals on a rocky, Earth-like planet, we will want to understand enough about the planet to rule out non-life processes that could have led to those chemicals being there.”

“These objects are too far away to send probes to, so the only way we’re ever going to learn anything about them is to point telescopes at them. Spectroscopy provides a powerful tool to determine their chemistry and dynamics.”

For more information about exoplanets and NASA’s planet-finding program, check out PlanetQuest.

Source: Spitzer

Ares I-X at the Launchpad

Ares at the pad. Credit: NASA

[/caption]
“The Stick” made it out to launchpad 39B without falling over. I have to admit, NASA’s new rocket looked tall, super-skinny and pointy (as Dr. Brian Cox described it), as it rolled out on the crawler transporter. Somehow, it seems the Ares I-X should be wider. It’s definitely tall — at 100 meters (327 feet,) it is 43 meters (143 feet) taller than the space shuttle. But appearances aside, this is an historic occasion. For the first time in more than a quarter century, a new vehicle is sitting out at the launchpad at Kennedy Space Center in Florida.

More pictures below:

Lit by xenon lights, the Ares I-X emerges from the Vehicle Assembly Building. Credit: NASA
Lit by xenon lights, the Ares I-X emerges from the Vehicle Assembly Building. Credit: NASA

The Ares I-X flight test vehicle arrived at the pad at approximately 7:45 a.m. EDT Tuesday. The crawler-transporter left Kennedy’s Vehicle Assembly Building at 1:39 a.m., traveling less than 1 mph during the 4.2-mile journey. The rocket was secured “hard down” on the launch pad at 9:17 a.m.

The test flight of the Ares I-X rocket is scheduled to launch at 8 a.m. on Oct. 27. This test flight will provide NASA an opportunity to test and prove hardware, models, facilities and ground operations associated with the Ares I launch vehicle. Mission managers will finalize the launch date at a flight readiness review on October 23.

And in case you aren’t familiar with what the Ares I-X is for, the test flight will check out this un-crewed, modified Ares I configuration with a sub-orbital development test that will launch the rocket 43 km (28 miles) in altitude. This is the first developmental flight test of the Constellation Program, which includes the Ares I and V rockets, Orion and the Altair lunar lander.

Unless it all gets axed. The Augustine Report comes out on October 22.

Ares on the way out to 39B. Credit: NASA Edge crew
Ares on the way out to 39B. Credit: NASA Edge crew

For more great images of Ares I-X, checkout Robert Pearlman’s collection of rollout pics over at collectSPACE, or Spaceflightnow.com’s gallery of Ares I-X images from this morning.

LRO, Chandrayaan-1 Scientist Arrested for Espionage

Nozette with a model of Chandrayaan-1. Credit: NDTV

Times are tough, but you have to wonder what this guy was thinking. Stewart David Nozette, 52, who was involved in the recent discovery of water on the Moon by the Chandrayaan-1 spacecraft has been arrested for espionage for allegedly trying to sell details of US missile detection satellites in exchange for cash. Nozette was attempting to sell classified information to a person who he believed was an Israeli intelligence officer. Nozette is a fairly prominent scientist who helped conceive the 1994 Clementine mission to the Moon, and currently is a co-investigator on Chandrayaan-1, the Indian Moon mission, and on an instrument aboard the Lunar Reconnaissance Orbiter.

According to a 16th October FBI affidavit, Nozette was contacted last month by an undercover officer posing as an agent working for the Israeli Intelligence Agency. Nozette agreed to accept money in exchange for his past access to top secret documents.

As former government physicist, allegedly Nozette worked for almost every military shop in the US government including the Air Force’s Phillips Laboratory, the Ballistic Missile Defense Organization, Lawrence Livermore National Laboratory, the Naval Research Laboratory, and the Defense Advanced Research Project’s Administration (DARPA). He also served on president George H. W. Bush’s space council and worked with NASA.

This isn’t the first time Nozette has been in trouble with the government. According to press reports, a small non-profit Nozette ran came under investigation by NASA in 2006 for misusing funds to pay for utilities, three mortgages a tennis club membership.

But this time the charges are more serious.

According to the Nature Blog, Nozette has worked for with Israeli contacts previously. The FBI affidavit says that between 1998 and 2008, an Israeli aerospace company “wholly owned by the Government of the State of Israel” paid Nozette some $225,000. “I thought I was working for you already,” Nozette told the agent in a transcript reproduced in the affidavit. “I mean that’s what I always thought, the [foreign company] was just a front.”

In September and October, Nozette allegedly provided details of a “prototype overhead collection system” to the FBI agent in exchange for cash payments of $2,000 and $9,000 dollars. He will appear later today in United States District court for the District of Columbia to face a single charge of attempted espionage.

Sources: Nature Blog, NDTV

MER Team Prepares to Extract Spirit

NASA's Mars Exploration Rover Spirit recorded this forward view of its arm and surroundings during the rover's 2,052nd Martian day, or sol (Oct. 11, 2009). Credit: NASA/JPL

[/caption]
To prepare for an actual attempt to extract the Spirit rover from its sand-trapped predicament, engineers using test rovers on Earth have added a new challenge. Until last week, those commanding and assessing drives by the test rovers were usually in the same room as the sandbox setup simulating Spirit’s predicament, where they can watch how each test goes. That changed for the latest preparation, called an operational readiness test.

The team members commanding drives by a test rover last week stayed away from the building with the sandbox. They assessed the results of each commanded drive only from the images and other data communicated from the test rover, the same way the team does for daily operations of the rovers that are on Mars.

“We conducted this round of testing under more flight-like conditions to test the team’s ability to make very complex extraction driving decisions using only the data sent back from the rover,” said Mars Exploration Rover Project Manager John Callas of NASA’s Jet Propulsion Laboratory, Pasadena, Calif.

The test began on Oct. 12 and ran five days on an accelerated schedule of two Martian days’ worth of commanding every day. The rover team also operated both Spirit and its twin, Opportunity, while conducting this readiness test at JPL.

Spirit became embedded in soft soil at a site called “Troy” five months ago, more than five years into a mission on Mars that was originally scheduled to last for three months. The rover team suspended further driving attempts with Spirit while evaluating possibilities from tests performed at JPL simulating the Troy situation.

Current plans call for an independent panel to review Spirit driving plans in late October, following analysis of results from the readiness test. Unless that review recommends any further preparations, Spirit will probably begin extraction moves within two weeks after the review.

Spirit has spent much of its time at Troy actively examining its surroundings, including analysis of layered soil at the site. In September, a new issue began affecting operations. Data from Spirit indicated that a brake on the motor that rotates the rover’s dish-shaped high-gain antenna was not working correctly. The team has been getting more diagnostic data and developing a work-around strategy similar to work-arounds already used for rover-motor brakes that showed similar symptoms earlier.

Source: JPL

Launches and Dockings and Robots, Oh My!

Regolith challenge participant vehicle. Credit: Jamie Foster.

[/caption]
It was a busy weekend in the world of space flight — both present and future — and so we’ll try to fit it all in one article, and include a couple of videos to help tell the stories. Before that, however, just a reminder that the Ares-I-X is slated to roll out to launchpad 39-B early Tuesday morning at 12:01 am EDT, to begin preparations for the scheduled Oct. 27 first test launch. If you’re an early bird, (or a night owl) watch the six-hour trip on NASA TV.

And now on to this weekend’s launch story:

The 600th launch of an Atlas rocket took place on a foggy Sunday morning, Oct. 18, from Vandenberg Air Force Base in California. A new global weather observatory (DMSP F-18) for America’s military was lofted into polar orbit. Watch the video below, and click here to watch a video of the Centaur upper stage which created a sensation as it flew over Europe later in the day when it dumped a load of excess propellant.

On Saturday, Oct. 17, A Progress cargo spacecraft, delivering 2.5 tons of supplies, successfully docked to the space station at 9:40 pm EDT. Here’s the video replay of that event from NASA TV:

Also on Sunday, nineteen teams pushed their robot competitors to the limit, and three teams claimed a total of $750,000 in NASA prizes at this year’s Regolith Excavation Challenge on Oct. 18. This is the first time in the competition’s three-year history that any team qualified for a cash prize, the largest NASA has awarded to date.

After two days of intense competition hosted at NASA’s Ames Research Center at Moffett Field, Calif., organizers conferred first place prize of $500,000 to Paul’s Robotics of Worcester, Mass. Terra Engineering of Gardena, Calif., was a three-time returning competitor and was awarded second place prize of $150,000, and Team Braundo of Rancho Palos Verde, Calif., took the third place of $100,000 as a first-time competitor.

Competitors were required to use mobile, robotic digging machines capable of excavating at least 330 pounds of simulated moon dirt, known as regolith, and depositing it into a container in 30 minutes or less. The rules required the remotely controlled vehicles to contain their own power sources and weigh no more than 176 pounds.

Read more about the competition here, and see lots more images and videos of the event here.

My Dad’s Treehouse

I know this has nothing to do with space exploration, but my Dad posted a video of his trip up and down the spiral staircase he built around the outside of a tree on his property (I grew on up Hornby Island, BC). The staircase has 99 stairs and goes up for about 75 feet (25 meters). He’s built a platform at the top where you can sit and see mountains and the ocean. And I spend my summer visits pulling the kids off the thing. Here’s a link to Dad’s blog (he’s a photographer, by trade, so I have a well documented childhood).

P.S. Oh, and Dad made it clear that the bird’s nest was old and empty.