Solar System Coloring Pages

Solar System montage

[/caption]
Want to find some cool Solar System coloring pages? Here are some links to resources we’ve been able to dig up from around the Internet.

Check out the offerings from Coloring Castle. I find it cool that they offer a version with Pluto, and then another without Pluto.

And one of the best resources on the internet for this kind of thing is Enchanted Learning. They’ve got a page just for Solar System coloring pages.

Windows on the Universe has coloring pages for all the planets in the Solar System. They even have an entire PDF book that you can print off with all the planets (including Pluto).

Coloring Fun has some more solar system pages for coloring.

And here are some resources from About.com.

Here are some resources from NASA. And here’s a link to a 3d Solar System.

We have written many articles about the Solar System for Universe Today. Here’s an article about Solar System projects for kids, and here’s an article about how to build a model of the Solar System.

We have also recorded an audio tour through the Solar System for Astronomy Cast. Start here at Episode 49: Mercury.

Spitzer Watches Planet-Forming Disk Change Quickly

This artist's conception shows a lump of material in a swirling, planet-forming disk. Image credit: NASA/JPL-Caltech

[/caption]
Something strange is going on around a young star called LRLL 31. Astronomers have witnessed a swirling disk of gas and dust which is changing rather quickly; sometimes weekly. This is likely a planet forming disk, however, planets take millions of years to form, so it’s rare to see anything change on time scales we humans can perceive. Another object appears to be pushing a clump of planet-forming material around the star, and this region is offering astronomers with the Spitzer Space Telescope a rare look into the early stages of planet formation.

Astronomer are seeing the light from this disk varying quite frequently. One possible explanation is that a close companion to the star — either a star or a developing planet — could be shoving planet-forming material together, causing its thickness to vary as it spins around the star.

“We don’t know if planets have formed, or will form, but we are gaining a better understanding of the properties and dynamics of the fine dust that could either become, or indirectly shape, a planet,” said James Muzerolle of the Space Telescope Science Institute, Baltimore, Md. Muzerolle is first author of a paper accepted for publication in the Astrophysical Journal Letters. “This is a unique, real-time glimpse into the lengthy process of building planets.”

One theory of planet formation suggests that planets start out as dusty grains swirling around a star in a disk. They slowly bulk up in size, collecting more and more mass like sticky snow. As the planets get bigger and bigger, they carve out gaps in the dust, until a so-called transitional disk takes shape with a large doughnut-like hole at its center. Over time, this disk fades and a new type of disk emerges, made up of debris from collisions between planets, asteroids and comets. Ultimately, a more settled, mature solar system like our own forms.

Before Spitzer was launched in 2003, only a few transitional disks with gaps or holes were known. With Spitzer’s improved infrared vision, dozens have now been found. The space telescope sensed the warm glow of the disks and indirectly mapped out their structures.

Muzerolle and his team set out to study a family of young stars, many with known transitional disks. The stars are about two to three million years old and about 1,000 light-years away, in the IC 348 star-forming region of the constellation Perseus. A few of the stars showed surprising hints of variations. The astronomers followed up on one, LRLL 31, studying the star over five months with all three of Spitzer’s instruments.

The observations showed that light from the inner region of the star’s disk changes every few weeks, and, in one instance, in only one week. “Transition disks are rare enough, so to see one with this type of variability is really exciting,” said co-author Kevin Flaherty of the University of Arizona, Tucson.

Both the intensity and the wavelength of infrared light varied over time. For instance, when the amount of light seen at shorter wavelengths went up, the brightness at longer wavelengths went down, and vice versa.

Muzerolle and his team say that a companion to the star, circling in a gap in the system’s disk, could explain the data. “A companion in the gap of an almost edge-on disk would periodically change the height of the inner disk rim as it circles around the star: a higher rim would emit more light at shorter wavelengths because it is larger and hot, but at the same time, the high rim would shadow the cool material of the outer disk, causing a decrease in the longer-wavelength light. A low rim would do the opposite. This is exactly what we observe in our data,” said Elise Furlan, a co-author from NASA’s Jet Propulsion Laboratory, Pasadena, Calif.

The companion would have to be close in order to move the material around so fast — about one-tenth the distance between Earth and the sun.

The astronomers plan to follow up with ground-based telescopes to see if a companion is tugging on the star hard enough to be perceived. Spitzer will also observe the system again in its “warm” mission to see if the changes are periodic, as would be expected with an orbiting companion. Spitzer ran out of coolant in May of this year, and is now operating at a slightly warmer temperature with two infrared channels still functioning.

“For astronomers, watching anything in real-time is exciting,” said Muzerolle. “It’s like we’re biologists getting to watch cells grow in a petri dish, only our specimen is light-years away.”

Source: JPL

Two Equinox Sunspots

Sunspots 1026 and1027 are members of new Solar Cycle 24. Photo credit: SOHO/MDI

[/caption]

Two sunspots appeared on old Sol yesterday just as Earth’s orbit ushered in the Autumnal Equinox. Two sunspots showing up at once hasn’t happened in more than a year, and over 80% of the days in 2009 have been “sunspotless” during this deepest solar minimum in a century. Spaceweather.com had a great picture, below, of the first sunspot that appeared, #1026, taken by astrophotographer Peter Lawrence. Lawrence said there was a lot going on around the new sunspot. “The spot’s dark core is surrounded by active fibrils and a swirling magnetic filament that gives the region a nice 3D appearance.”

Sunspot 1026.  Credit: Peter Lawrence.
Sunspot 1026. Credit: Peter Lawrence.

Check out Spaceweather.com for more (and new images) of the new sunspots.

Build the Ares I-X in Less Than Six Minutes


Here is a very nifty time-lapse video of what it took to put together the Ares I-X test vehicle, which will launch next month to test out NASA’s newest family of rocket. The big news is that NASA has actually moved up the date for the launch to Tuesday, October 27 from the original date of October 31. The new date is pending successful testing and data verification.
Continue reading “Build the Ares I-X in Less Than Six Minutes”

62 New Meteor Showers to Enjoy

Quadrantid Meteor Shower. Image credit: NASA

[/caption]
Earth is constantly plowing through meteoric debris, and any given night stargazers can spot a shooting star or two. A seven year survey by astronomers at the University of Western Ontario has identified 117 new meteor showers, 62 of which have never been reported before. It’s not that there are more meteors to see and enjoy these days, but the paths of the debris particles have been tracked, allowing researchers to trace the debris’ orbits around the sun and track down their parent bodies. Next, the big job will be naming these different showers. Right now there are only 64 recognized and named meteor showers and over 300 other showers that have yet to be authorized by the International Astronomical Union.

The meteor survey uses radar to detect the trail of ionized gases the debris produces produced as they speed through atmosphere and disintegrate. The radar can detect debris about 10 times as small as what the naked eye can see, spotting objects about 0.1 millimetres across.

New Scientist reports that the research team found that about half of the 117 observed streams follow orbits similar to those from other meteor showers. That bolsters previous research suggesting that the parent objects – mostly comets – likely broke up into smaller bodies that also shed debris trails – a break-up process that can occur over and over.

“In some cases, we can still trace [the trails] back to some parent objects; in others, we can’t see an obvious parent,” said team leader Peter Brown in New Scientist. For example, the team found half a dozen streams linked to Comet Encke, the parent body of the well-known Taurid meteor shower.

See this IAU page for a list of all discovered and established meteor showers.

Source: New Scientist

Supernova 1987A

SN 1987A Credit: Hubble Space Telescope (2004)

[/caption]
The first supernova in 1987 (that’s what the “A” means) was the brightest supernova in several centuries (and the first observed since the invention of the telescope), the first (and so far only) one to be detected by its neutrino emissions, and the only one in the LMC (Large Magellanic Cloud) observed directly.

Ian Shelton, then a research assistant with the University of Toronto, working at the university’s Las Campanas station, and Oscar Duhalde, a telescope operator at Las Campanas Observatory, were the first to spot it, on the night of 23/24 February 1987 (around midnight actually); over the next 24 hours several others also independently discovered it.

The IAU’s CBAT went wild! That’s the International Astronomical Union’s Central Bureau for Astronomical Telegrams, the clearing house for astronomers for breaking news. You can read the historic IAUC (C for Circular) 4416 here.

Once the discovery of SN 1987A became known, physicists examined the records from various neutrino detectors … and found three, independent, clear signals of a burst of neutrinos several hours before visual discovery, just as predicted by astrophysical models! Champagne flowed.

Not long afterwards, the star which blew up so spectacularly – the progenitor – was identified as Sanduleak -69° 202a, a blue supergiant. This was not what was expected for a Type II supernova (the models said red supergiants), but an explanation was quickly found (Sanduleak -69° 202a had a lower-than-modelled oxygen abundance, affecting the transparency of its outer envelope).

The iconic Hubble Space Telescope image (above) of SN 1987A shows the inner ring, where the debris from the explosion is colliding with matter expelled from the progenitor about 20,000 years ago; more from the Hubble here.

AAVSO (American Association of Variable Star Observers) has a nice write-up of SN 1987A.

No wonder, then, that SN 1987A features so often in Universe Today stories; for example Supernova Shockwave Slams into Stellar Bubble, XMM-Newton’s View of Supernova 1987A, Supernova Left No Core Behind, and Hubble Sees a Ring of Pearls Around 1987 Supernova.

SN 1987A figures prominently in Astronomy Cast The Search for Neutrinos, and in Nebulae.

References:
AAVSO
University of Oregon

Kepler’s Third Law

Johannes Kepler
Johannes Kepler

[/caption]
“The square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit” That’s Kepler’s third law. In other words, if you square the ‘year’ of each planet, and divide it by the cube of its distance to the Sun, you get the same number, for all planets.

(The other two are “the orbit of each planet is an ellipse with the Sun at a focus”, and “a line between a planet and the Sun sweeps out equal areas in equal times”.)

Copernicus, Kepler, and Newton dealt a one-two-three knockout blow to the idea – thousands of years old – that the Sun (and planets) moved around the Earth. Copernicus put the Sun at the center, Kepler modified Copernicus’ circular motions (and provided a simple, quantitative description of the actual motion), and Newton explained how it all worked (gravity).

Kepler worked out his three laws from detailed records of observations of the positions of the planets (known at the time, Mercury, Venus, Mars, Jupiter, and Saturn) – especially Mars – painstakingly compiled by Tycho Brahe.

Kepler’s third law (in fact, all three) works not only for the planets in our solar system, but also for the moons of all planets, dwarf planets and asteroids, satellites going round the Earth, etc. Well, not quite; if the secondary body – a planet, say – has a mass that’s a significant fraction of the primary one (the Sun, say), then the law needs a small tweak.

By showing how Kepler’s laws could be derived from his universal law of gravitation, Newton united heaven and earth, perhaps the greatest revolution in science (OK, Darwin’s revolution may be greater). Before Newton, the heavens were thought to work according to rules quite different from the ones which governed things on Earth.

NASA’s Imagine the Universe! has a neat demonstration of Kepler’s laws, and this PDF file (from the University of Tennessee Knoxville’s Maths Department) gives a simple derivation of Kepler’s laws, from Newton’s universal law of gravitation.

Universe Today articles with more information: Kepler’s Laws, Let’s Study Law: Kepler Would Be So Proud, and Happy Birthday Johannes Kepler.

Gravity, an Astronomy Cast episode, also discusses Kepler’s third law, as does Where is the Center of the Universe?.

Abiogenesis

What are Fossils
Fossil stromatolite, Barberton Mountains South Africa (2.5 billion years old)

[/caption]
How did life on Earth arise? Scientific efforts to answer that question are called abiogenesis. More formally, abiogenesis is a theory, or set of theories, concerning how life on Earth began (but excluding panspermia).

Note that while abiogenesis and evolution are related, they are distinct (evolution says nothing about how life began; abiogenesis says nothing about how life evolves).

Intensive study of the Earth’s rocks has turned up lots and lots of evidence that some kinds of prokaryotes lived happily on Earth about 3.5 billion years ago (and there’re also pointers to the existence of life on Earth in the oldest rocks). So, if life arose on Earth, it did so from the chemicals in the water, air, and rocks of the early Earth … and in no more than a few hundred million years.

Because there are no sedimentary rocks older than about 3.7 billion years (and no metamorphic ones older than about 3.9 billion years), and because the oldest such rocks already contain evidence that there was life on Earth then, testing abiogenesis theories must be done by means other than geological.

There is a long history of attempts to create various organic molecules – such as amino acids – from simple precursors such as carbon dioxide, ammonia, and water, in conditions which simulate those of the early Earth. Those of Miller and Urey, in 1953, are the most famous (and the first).

It turns out that it’s pretty easy to form many kinds of organic molecules, in a wide range of environments … so the focus of research today is on how life could arise from any particular brew. And the hard part is how reliable self-replication get going (if you can make some sort of primitive cell in a test tube, it isn’t a form of life if it can’t reproduce itself!). So far, it seems that RNA and DNA cannot have been involved (too hard to form and stay stable), but several simpler kinds of molecules may work.

Well, that’s one hard part; another is how can a stable bag of chemicals form? (There have been some exciting recent discoveries which may help answer at least part of this question).

A different approach – than reproduction – to finding the key to how life got started involves asking how metabolism arose; how can a bag of chemicals take in ‘food’, process it (to supply energy to all the other chemical processes going on in the bag), and get rid of the waste?

The TalkOrigins website has a summary of abiogenesis, though it is now somewhat dated (much has happened in just the last three years)!

Abiogenesis in its strict sense (origin of life on Earth) is a bit off the track for Universe Today; however, conditions under which life might spontaneously arise, on other planets (etc) is not. Some Universe Today stories on this are Sub-surface Oceans In Comets Suggest Possible Origin of Life, Add Heat, Then Tectonics: Narrowing the Hunt for Life in Space, and Has Liquid Water Been Detected on Mars?

Finding Buried Treasure on Mars: Radar Map Confirms Climate Cycles

A radar-generated map of the thickness of the layered deposits. Image credit: NASA/JPL-Caltech/University of Rome/Southwest Research Institute/University of Arizona

[/caption]

A radar instrument on the Mars Reconnaissance Orbiter has essentially looked below the surface of the Red Planet’s north-polar ice cap, and found data to confirm theoretical models of Martian climate swings during the past few million years. The new, three-dimensional map using 358 radar observations provides a cross-sectional view of the north-polar layered deposits. “The radar has been giving us spectacular results,” said Jeffrey Plaut of JPL, a member of the science team for the Shallow Radar instrument. “We have mapped continuous underground layers in three dimensions across a vast area.”

Alignment of the layering patterns with the modeled climate cycles provides insight about how the layers accumulated. These ice-rich, layered deposits cover an area one-third larger than Texas and form a stack up to 2 kilometers (1.2 miles) thick atop a basal deposit with additional ice.

“Contrast in electrical properties between layers is what provides the reflectivity we observe with the radar,” said Nathaniel Putzig of Southwest Research Institute, Boulder, CO, who led the science team. “The pattern of reflectivity tells us about the pattern of material variations within the layers.”

Earlier radar observations indicated that the Martian north-polar layered deposits are mostly ice. Radar contrasts between different layers in the deposits are interpreted as differences in the concentration of rock material, in the form of dust, mixed with the ice. These deposits on Mars hold about one-third as much water as Earth’s Greenland ice sheet.

Their radar results show that high-reflectivity zones, with multiple contrasting layers, alternate with more-homogenous zones of lower reflectivity. Patterns of how these two types of zones alternate can be correlated to models of how changes in Mars’ tilt on its axis have produced changes in the planet’s climate in the past 4 million years or so, but only if some possibilities for how the layers form are ruled out.

“We’re not doing the climate modeling here; we are comparing others’ modeling results to what we observe with the radar, and using that comparison to constrain the possible explanations for how the layers form,” Putzig said.

The most recent 300,000 years of Martian history are a period of less dramatic swings in the planet’s tilt than during the preceding 600,000 years. Since the top zone of the north-polar layered deposits — the most recently deposited portion — is strongly radar-reflective, the researchers propose that such sections of high-contrast layering correspond to periods of relatively small swings in the planet’s tilt.

They also propose a mechanism for how those contrasting layers would form. The observed pattern does not fit well with an earlier interpretation that the dustier layers in those zones are formed during high-tilt periods when sunshine on the polar region sublimates some of the top layer’s ice and concentrates the dust left behind. Rather, it fits an alternative interpretation that the dustier layers are simply deposited during periods when the atmosphere is dustier.

The new radar mapping of the extent and depth of five stacked units in the north-polar layered deposits reveals that the geographical center of ice deposition probably shifted by 400 kilometers (250 miles) or more at least once during the past few million years.

The Italian Space Agency operates the Shallow Radar instrument.

More information about the MRO mission.

Source: JPL

High School Student Discovers Strange Pulsar-Like Object

When Lucas Bolyard looked at the bottom plot, he noticed the thick, black blob left of the center. He saw that this signal was positioned on the graph where it indicated a non-zero "dispersion measure," or DM. Dispersion measure is used by astronomers as an indicator of cosmic distances. The non-zero DM value of this pulse is a clue that the signal came from space, not from Earth. The other blobs on the bottom of the graph are signals at a distance of zero-- that is from here on Earth. CREDIT: NRAO/AUI/NSF

[/caption]
A high-school student from West Virginia has discovered a new astronomical object, a strange type of neutron star called a rotating radio transient. Lucas Bolyard, a sophomore at South Harrison High School in Clarksburg, WV, made the discovery while participating in a project in which students are trained to search through data from the Robert C. Byrd Green Bank Telescope (GBT). Bolyard made the discovery in March, after he already had studied more than 2,000 data plots from the GBT and found nothing.

The project is the Pulsar Search Collaboratory (PSC), which allows students to do real scientific research by looking at data from the GBT, the largest radio telescope in the US.

Lucas Bolyard CREDIT: NRAO/AUI/NSF
Lucas Bolyard CREDIT: NRAO/AUI/NSF

“Lucas is one of the most enthusiastic students involved in the project,” said Duncan Lorimer, astronomer from West Virginia University. “He’s one of these youngsters that never gives up, he’s very persistent and he has all the attributes that a scientist should have.”

Rotating radio transients are thought to be similar to pulsars, superdense neutron stars that are the corpses of massive stars that exploded as supernovae. Pulsars are known for their lighthouse-like beams of radio waves that sweep through space as the neutron star rotates, creating a pulse as the beam sweeps by a radio telescope. While pulsars emit these radio waves continuously, rotating radio transients emit only sporadically, one burst at a time, with as much as several hours between bursts. Because of this, they are difficult to discover and observe, with the first one only discovered in 2006.

“This neutron star is rotating very rapidly, so you have something the size of city with the mass of the sun, spinning incredibly rapidly,” said Lorimer “which also has an incredibly large magnetic field which is how we detect it with radio telescopes.”

“These objects are very interesting, both by themselves and for what they tell us about neutron stars and supernovae,” said Maura McLaughlin, also from WVU. “We don’t know what makes them different from pulsars — why they turn on and off. If we answer that question, it’s likely to tell us something new about the environments of pulsars and how their radio waves are generated.”

“They also tell us there are more neutron stars than we knew about before, and that means there are more supernova explosions. In fact, we now almost have more neutron stars than can be accounted for by the supernovae we can detect,” she added.

Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF
Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF

“I was home on a weekend and had nothing to do, so I decided to look at some more plots from the GBT,” Bolyard said. “I saw a plot with a pulse, but there was a lot of radio interference, too. The pulse almost got dismissed as interference,” he added.

Nonetheless, he reported it, and it went on a list of candidates for McLaughlin and Lorimer to re-examine, scheduling new observations of the region of sky from which the pulse came. Disappointingly, the follow-up observations showed nothing, indicating that the object was not a normal pulsar. However, the astronomers explained to Bolyard that his pulse still might have come from a rotating radio transient.

Confirmation didn’t come until July. Bolyard was at the NRAO’s Green Bank Observatory with fellow PSC students. The night before, the group had been observing with the GBT in the wee hours, and all were very tired. Then Lorimer showed Bolyard a new plot of his pulse, reprocessed from raw data, indicating that it is real, not interference, and that Bolyard is likely the discoverer of one of only about 30 rotating radio transients known.

Suddenly, Bolyard said, he wasn’t tired anymore. “That news made me full of energy,” he exclaimed. “My friends were really excited because they think I’m going to be famous!”

As of a year ago, Bolyard said he wouldn’t have thought of becoming astronomer, but this has given him second thoughts. “Making this discovery has made me very excited to get into a scientific field,” he said. “It’s a lot of hard work, but it’s worth it.”

The PSC, led by NRAO Education Officer Sue Ann Heatherly and Project Director Rachel Rosen, includes training for teachers and student leaders, and provides parcels of data from the GBT to student teams. The project involves teachers and students in helping astronomers analyze data from 1500 hours of observing with the GBT. The 120 terabytes of data were produced by 70,000 individual pointings of the giant, 17-million-pound telescope. Some 300 hours of the observing data were reserved for analysis by student teams.

Learn more about the PSC and Bolyard’s discovery on the Sept. 18 edition of 365 Days of Astronomy.

NRAO has a video about the discovery.

The student teams use analysis software to reveal evidence of pulsars. Each portion of the data is analyzed by multiple teams. In addition to learning to use the analysis software, the student teams also must learn to recognize man-made radio interference that contaminates the data. The project will continue through 2011.

“The students get to actually look through data that has never been looked through before,” Rosen said. From the training, she added, “the students get a wonderful grasp of what they’re looking at, and they understand the science behind the plots that they’re looking at.”

Source: NRAO