Astronomers Scan the Skies for Nanosecond Pulses of Light From Interstellar Civilizations

Artist’s impression of Green Bank Telescope connected to a machine learning network. Credit: Breakthrough Listen/Danielle Futselaar.

In 2015, Russian-Israeli billionaire Yuri Milner and his non-profit organization, Breakthrough Initiatives, launched the largest Search for Extraterrestrial Intelligence (SETI) project. Known as Breakthrough Listen, this SETI effort relies on the most powerful radio telescopes in the world and advanced analytics to search for potential evidence of technological activity (aka. “technosignatures”). The ten-year project will survey the one million stars closest to Earth, the center of our galaxy, the entire galactic plane, and the 100 galaxies closest to the Milky Way.

In 2018, they partnered with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) Collaboration, a ground-based system of gamma-ray telescopes operating at the Fred Lawrence Whipple Observatory (FLWO) atop Mt. Hopkins in southern Arizona. In a recent paper, the VERITAS Collaboration shared the results of the first year of their search for “optical technosignatures” (from 2019 to 2020). Their results are a vital proof of concept demonstrating how future searches for extraterrestrial civilizations can incorporate optical pulses into their technosignature catalog.

Continue reading “Astronomers Scan the Skies for Nanosecond Pulses of Light From Interstellar Civilizations”

Supernovae are the Source of Dust in Early Galaxies

Images of SN 2004et and SN 2017eaw. Credit: NASA, ESA, CSA, Ori Fox (STScI), Melissa Shahbandeh (STScI), Alyssa Pagan (STScI)

Every now and then there’s an interesting discovery that helps us fill in a gap in our understanding of the universe. In the case of this latest discovery, we now have confirmation of a process we’ve long assumed, but have had little direct evidence for. It all has to do with cosmic dust.

Continue reading “Supernovae are the Source of Dust in Early Galaxies”

Venus has Clouds of Concentrated Sulfuric Acid, but Life Could Still Survive

Image from NASA's Mariner 10 spacecraft in February 1974 as it traveled away from Venus. (Credit: NASA/JPL-Caltech)

The surface of Venus is like a scene from Dante’s Inferno – “Abandon all hope, ye who enter here!” and so forth. The temperature is hot enough to melt lead, the air pressure is almost one hundred times that of Earth’s at sea level, and there are clouds of sulfuric acid rain to boot! But roughly 48 to 60 km (30 to 37.3 mi) above the surface, the temperatures are much cooler, and the air pressure is roughly equal to Earth’s at sea level. As such, scientists have speculated that life could exist above the cloud deck (possibly in the form of microbes) as it does on Earth.

Unfortunately, these clouds are not composed of water but of concentrated sulfuric acid, making the likelihood that life could survive among them doubtful. However, a new study led by scientists from the Massachusetts Institute of Technology (MIT) reveals that the basic building blocks of life (nucleic acid bases) are stable in concentrated sulfuric acid. These findings indicate that Venus’ atmosphere could support the complex chemistry needed for life to survive, which could have profound implications in the search for habitable planets and extraterrestrial life.

Continue reading “Venus has Clouds of Concentrated Sulfuric Acid, but Life Could Still Survive”

A Practical Use for Space Power: Beaming Energy to Probes on Venus

The first color pictures taken of the surface of Venus by the Venera-13 space probe. Credit: NASA
The first color pictures taken of the surface of Venus by the Venera-13 space probe. The Venera 13 probe lasted only 127 minutes before succumbing to Venus's extreme surface environment. Part of building a longer-lasting Venus lander is figuring out how to power it. Credit: NASA

A few weeks ago, a team of scientists from Caltech announced that they had successfully transmitted energy from an orbiting satellite down to Earth. It wasn’t a lot of energy, but it showed that it was possible.

Eventually, we might be able to beam energy from solar satellites down to Earth, making solar energy available almost anywhere and helping combat climate change. But there’s another potential use: powering surface probes on Venus.

Continue reading “A Practical Use for Space Power: Beaming Energy to Probes on Venus”

Astronomers Map out the Radio Waves Coming From Large Satellite Constellations

Illustration Starlink satellites over LOFAR. Credit: Daniëlle Futselaar

Satellite internet constellations such as Starlink have the potential to make connect nearly the entire world. Starlink already provides internet access to remote areas long excluded by the internet revolution, and other projects such as OneWeb and Project Kuiper are in the works. But there are side effects to creating a massive array of low-orbit satellites, and one of them is the potentially serious effect on astronomy.

Continue reading “Astronomers Map out the Radio Waves Coming From Large Satellite Constellations”

Amazing Video Takes Flight Across the Dunes of Mars

This is a screenshot from the flyover video of Mars' Matara Crater created from HiRise data. Image Credit: NASA/JPL-Caltech/UArizona

Mars may be a cold, dry, dead world, but it’s still part of nature. As part of nature, it displays a sort of haunted beauty as only non-living forces shape its surface over long periods of time. It’s like a rocky-planet laboratory shaped by natural forces where interference from living processes is absent.

Continue reading “Amazing Video Takes Flight Across the Dunes of Mars”

Did the Pulsar Timing Array Actually Detect Colliding Primordial Black Holes?

Illustration of merging black holes and their effect on pulsars and Earth. Credit: Daniëlle Futselaar (artsource.nl) / Max Planck Institute for Radio Astronomy

The universe is filled with gravitational waves. We know this thanks to the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), which recently announced the first observations of long wavelength gravitational waves rippling through the Milky Way. The waves are likely caused by the mergers of supermassive black holes, but can we prove it?

Continue reading “Did the Pulsar Timing Array Actually Detect Colliding Primordial Black Holes?”

If There Were a War in Space, Debris Would Destroy all Remaining Satellites in About 40 Years

The destruction of a single satellite could be catastrophic for our orbital endeavours. Image Credit: ESA

On one particular day in 2021, astronauts and cosmonauts aboard the ISS must have felt a pin-prick of fear and uncertainty. On November 15th of that year, Russia fired an anti-satellite missile at one of its own defunct military satellites, Tselina-D. The target weighed about 1,750 kg, and when the missile struck its target, the satellite exploded into a cloud of hazardous debris.

NASA woke the crew on the International Space Station in the middle of the night and told them to take precautions and prepare for a possible impact. The Chinese space station Tiangong was also in danger, and multiple countries and space agencies condemned Russia’s foolhardy behaviour.

But there was no way to contain the debris.

Continue reading “If There Were a War in Space, Debris Would Destroy all Remaining Satellites in About 40 Years”

The Early Universe Ran in Slow Motion

Illustration of an active quasar. What role does its dark matter halo play in activating the quasar? Credit: ESO/M. Kornmesser
Illustration of an active quasar. New research shows that SMBHs eat rapidly enough to trigger them. Credit: ESO/M. Kornmesser

Time is relative, as they say, particularly for mid-day meals. As special relativity shows, the measure of any two clocks depends on their motion relative to each other. The greater their relative speed, the slower each clock is relative to each other. So, since we see distant galaxies speeding away from us, we should also see time move more slowly. Right?

Continue reading “The Early Universe Ran in Slow Motion”

ESA's Euclid Mission is Off to Explore the Dark Universe

Artist impression of the Euclid mission in space. Credit: ESA

On Saturday, July 1st (Canada Day!), the ESA’s Euclid space telescope lifted off from Cape Canaveral in Florida. This next-generation astrophysics mission will spend the next few weeks flying to the Earth-Sun L2 Lagrange Point, where it will spend the next six years observing one-third of the sky. During that time, Euclid will observe billions of galaxies to a distance of 10 billion light-years, leading to the most extensive 3D map of the Universe ever created. This map will help astronomers and cosmologists resolve the lingering mystery of Dark Matter and Dark Energy (DM & DE).

Continue reading “ESA's Euclid Mission is Off to Explore the Dark Universe”