NASA's VIPER Rover's First Moments on the Moon Might Be its Most Terrifying

Volatiles Investigating Polar Exploration Rover (VIPER) Moon Gravitation Representative Unit 3 (MGRU3) Astrobotic Griffin Lunar Lander Structural Test Model (STM) egress testing. Credit: NASA/Dominic Hart.

NASA is building its first-ever robotic lunar rover. Named VIPER (Volatiles Investigating Polar Exploration Rover), the rover is set for launch in late 2024. But the terrain it will find when it reaches the Moon is impossible to predict. A series of tests carried out this spring are helping engineers understand the rover’s limits, and will ensure that VIPER can disembark from its lander even on extremely uneven terrain.

Continue reading “NASA's VIPER Rover's First Moments on the Moon Might Be its Most Terrifying”

Gravitational Waves Can Be Gravitationally Lensed, and This Could Provide Another Way to Measure the Expansion of the Universe

A simulation of merging black holes. Credit: NASA's Goddard Space Flight Center/Scott Noble

Gravitational waves don’t travel through space and time. They are ripples in the fabric of spacetime itself. This is why they are so difficult to detect. We can only observe them by closely watching how objects bent and stretched within spacetime. But despite their oddness, gravitational waves behave in many of the same ways as light, and astronomers can use that fact to study cosmic expansion.

Continue reading “Gravitational Waves Can Be Gravitationally Lensed, and This Could Provide Another Way to Measure the Expansion of the Universe”

JWST Sees the Beginning of the Cosmic Web

This deep galaxy field from Webb’s NIRCam (Near-Infrared Camera) shows an arrangement of 10 distant galaxies marked by eight white circles in a diagonal, thread-like line. (Two of the circles contain more than one galaxy.) This 3 million light-year-long filament is anchored by a very distant and luminous quasar – a galaxy with an active, supermassive black hole at its core. The quasar, called J0305-3150, appears in the middle of the cluster of three circles on the right side of the image. Its brightness outshines its host galaxy. The 10 marked galaxies existed just 830 million years after the big bang. The team believes the early filament of the Cosmic Web will eventually evolve into a massive cluster of galaxies. Credit: NASA, ESA, CSA, Feige Wang (University of Arizona)
This deep galaxy field from Webb’s NIRCam (Near-Infrared Camera) shows an arrangement of 10 distant galaxies marked by eight white circles in a diagonal, thread-like line. (Two of the circles contain more than one galaxy.) This 3 million light-year-long filament is anchored by a very distant and luminous quasar – a galaxy with an active, supermassive black hole at its core. The quasar, called J0305-3150, appears in the middle of the cluster of three circles on the right side of the image. Its brightness outshines its host galaxy. The 10 marked galaxies existed just 830 million years after the big bang. The team believes the early filament of the Cosmic Web will eventually evolve into a massive cluster of galaxies. Credit: NASA, ESA, CSA, Feige Wang (University of Arizona)

The Cosmic Web is the large-scale structure of the Universe. If you could watch our cosmos unfold from the Big Bang to today, you’d see these filaments (and the voids between them) form throughout time. Now, astronomers using JWST have found ten galaxies that make up a very early version of this structure a mere 830 million years after the Universe began.

Continue reading “JWST Sees the Beginning of the Cosmic Web”

NASA Locks Four Volunteers Into a One-Year Mission in a Simulated Mars Habitat

On June 25, 2023, a crew of four volunteers entered a simulated Martian habitat, from which they will not emerge for over a year. Their mission: to learn more about the logistics – and the human psychology – of living long-term on another planet, without ever leaving the ground.

Continue reading “NASA Locks Four Volunteers Into a One-Year Mission in a Simulated Mars Habitat”

Next Generation Gravitational Wave Detectors Could Pin Down Dark Matter

Gravitational astronomy is a relatively new discipline that has opened many doors for astronomers to understand how the huge and violent end of the scale works. It has been used to map out merging black holes and other extreme events throughout the universe. Now a team from Cal Tech’s Walter Burke Institute for Theoretical Physics thinks they have a new use for the novel technology – constraining the properties of dark matter.

Continue reading “Next Generation Gravitational Wave Detectors Could Pin Down Dark Matter”

A Planet Was Swallowed by a Red Giant, But it Survived

Artist view of Halla as two stars merge to become the star Baekdu. Credit: W. M. Keck Observatory/Adam Makarenko

The Sun is going to kill us. Not anytime soon, but it will kill us. At the moment the Sun keeps itself going by fusing hydrogen into helium and other heavier elements, but in five or so billion years it is going to run out of hydrogen. When that happens, the Sun will make a desperate attempt to keep going by fusing helium. During this period it will swell to a red giant, likely so large that it engulfs the Earth, baking it to a crisp in its diffuse hot atmosphere.

Continue reading “A Planet Was Swallowed by a Red Giant, But it Survived”

Mmm. Perseverance Finds a Doughnut-Shaped Rock on Mars.

NASA's Perseverance rover spotted a donut-shaped rock on Mars. Credit: NASA/JPL-Caltech

The pareidolia crowd is sure to have a field day with this! Once again, an oddly-shaped rock has been spotted on Mars. Once again, the rock is donut-shaped. This particular rock was spotted by NASA’s Perseverance rover, which continues to explore the Jezero Crater in Mars’ northern hemisphere. The image was taken by the Remote Microscopic Imager (RMI), part of the SuperCam instrument, at a distance of about 100 meters (328 feet) from the rover, on June 22nd, 2023 – the 832nd Martian day (or sol) of the mission.

Continue reading “Mmm. Perseverance Finds a Doughnut-Shaped Rock on Mars.”

Dark Matter Might Interact in a Totally Unexpected Way With the Universe

Image from Dark Universe, showing the distribution of dark matter in the universe. Credit: AMNH

According to Sir Isaac Newton’s theory of Universal Gravitation, gravity is an action at a distance, where one object feels the influence of another regardless of distance. This became a central feature of Classical Newtonian Physics that remained the accepted canon for over two hundred years. By the 20th century, Einstein began reconceptualizing gravity with his theory of General Relativity, where gravity alters the curvature of local spacetime. From this, we get the principle of locality, which states that an object is directly influenced by its surroundings, and distant objects cannot communicate instantaneously.

However, the birth of quantum mechanics has caused yet another conceptualization, as physicists discovered that non-local phenomena not only exist but are fundamental to reality as we know it. This includes quantum entanglement, where the properties of one particle can be transferred to another instantaneously and regardless of distance. In a new study by the International School for Advanced Studies (SISSA) in Trieste, Italy, a team of researchers suggests that Dark Matter might interact with gravity in a non-local way.

Continue reading “Dark Matter Might Interact in a Totally Unexpected Way With the Universe”

Astronomers Find the Fastest Spider Pulsar, Filling in the Missing Link in Their Evolution

An illustration of FAST and a binary pulsar. Credit:ScienceApe/CAS/NAOC

Pulsars are rotating neutron stars aligned with Earth in just such a way that the energy radiated from their magnetic poles sweeps across us with each rotation. From this, we see a regular pulse of radio light, like a cosmic lighthouse. The fastest pulsars can rotate very quickly, pulsing hundreds of times per second. These are known as millisecond pulsars.

Continue reading “Astronomers Find the Fastest Spider Pulsar, Filling in the Missing Link in Their Evolution”

Psyche Mission Passes Independent Review Board with Flying Colors

Image of NASA engineers preparing the Psyche spacecraft for launch within a clean room at the Astrotech Space Operations Facility located near the NASA Kennedy Space Center. Psyche is scheduled to launch in October 2023 on a SpaceX Falcon Heavy rocket from historic Launch Complex 39A at Kennedy. (Credit: NASA/Ben Smegelsky)

An independently appointed review board recently announced that NASA, their Jet Propulsion Laboratory (JPL), and the California Institute of Technology (Caltech) have exceeded expectations in taking steps to ensure the successful launch of the metal-rich-asteroid-hunting Psyche mission this October. This comes after Psyche’s initial launch date was delayed from August 2022 due to late delivery of the spacecraft’s flight software and testing equipment, which prevented engineers from performing the necessary checkouts prior to launch.

Continue reading “Psyche Mission Passes Independent Review Board with Flying Colors”