Melting Water in Mars’ Past Could Have Created Martian Gullies

Image of gullies in Terra Sirenum on Mars taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard NASA's Mars Reconnaissance Orbiter. (Credit: NASA/JPL/University of Arizona)

A recent study published in Science examines how thin channels inside impact craters on Mars could have formed from Martian gullies, which share similar characteristics with gullies on Earth and are typically formed from cascading meltwater, despite the Martian atmosphere being incapable of supporting liquid water on its surface. However, the researchers hypothesize these gullies could have formed during periods of high obliquity, also known as axial tilt, on Mars, which could have resulted in a brief rise in surface temperatures that could have melted some surface and subsurface ice, leading to meltwater cascading down the sides of impact craters across the planet.

Continue reading “Melting Water in Mars’ Past Could Have Created Martian Gullies”

IceCube Makes a Neutrino Map of the Milky Way

An artist’s concept of the Milky Way seen through a neutrino lens (blue). Credit: IceCube Collaboration/U.S. National Science Foundation (Lily Le & Shawn Johnson)/ESO (S. Brunier)
An artist’s concept of the Milky Way seen through a neutrino lens (blue). Credit: IceCube Collaboration/U.S. National Science Foundation (Lily Le & Shawn Johnson)/ESO (S. Brunier)

We’ve seen the Milky Way with ultraviolet eyes, through x-ray vision, gamma-ray views, radio emissions, microwaves, and visible light. Now, consider a neutrino point of view. Thanks to the IceCube Collaboration, we get to see our home galaxy through the lens of this mysterious particle. It’s an eerie sight that also tells us our galaxy isn’t quite like the others. It’s a neutrino desert.

Continue reading “IceCube Makes a Neutrino Map of the Milky Way”

NASA’s HiRISE Camera Recently Imaged a Martian Dust Devil. But Why Study Them?

A recent dust devil on Mars captured by NASA's High Resolution Imaging Experiment (HiRISE) camera. (Credit: NASA/JPL-Caltech/UArizona)

NASA recently used its powerful High Resolution Imaging Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter to take a breathtaking image of a dust devil traversing Syria Planum on Mars. One unique aspect of dust devils is their shadows can be used to estimate their height, which have been estimated to reach 20 km (12 miles) into the Martian sky. Studying dust devils on Mars is a regular occurrence for the scientific community and can help scientists better understand surface processes on other planets. But with the atmospheric pressure on Mars being only a fraction of Earth’s, what processes are responsible for producing dust devils?

Continue reading “NASA’s HiRISE Camera Recently Imaged a Martian Dust Devil. But Why Study Them?”

Here Come JWST’s First Images of Saturn

Saturn by JWST
Image of Saturn and some of its moons, captured by the James Webb Space Telescope’s NIRCam instrument on June 25, 2023. Credits: NASA, ESA, CSA, STScI, M. Tiscareno (SETI Institute), M. Hedman (University of Idaho), M. El Moutamid (Cornell University), M. Showalter (SETI Institute), L. Fletcher (University of Leicester), H. Hammel (AURA); image processing by J. DePasquale (STScI)

Note: This story has been updated with new images.

It’s Saturn’s turn.

The JWST is aiming its powerful, gold-coated, segmented beryllium mirror at our Solar System’s second-largest, and perhaps most striking, planet. So far, we’ve only got a sneak preview of the raw images without any processing or scientific commentary.

But they’re a start.

Continue reading “Here Come JWST’s First Images of Saturn”

A Direct Image of a Planet That’s Just Like Jupiter, Only Younger

Direct images of the extrasolar planet, AF Lep b (white spot around 10 o’clock), orbiting its host star (center) taken in Dec. 2021 and Feb. 2023 using the W. M. Keck Observatory’s 10-meter telescope in Hawai?i. (Credit: Kyle Franson, University of Texas at Austin/W. M. Keck Observatory)

In a recent study published in The Astrophysical Journal Letters, a team of astronomers used the W. M. Keck Observatory on Maunakea, Hawai?i Island to identify exoplanet, AF Lep b, which is three times the mass of Jupiter orbiting a Sun-sized star located approximately 87.5 light-years from Earth. What makes this discovery unique is AF Lep b is the first exoplanet discovered using a method called astrometry, which involves measuring unexpected, miniscule changes in the position of a star relative to nearby stars, which could indicate another object, an exoplanet, is causing gravitational tugs on its parent star.

Continue reading “A Direct Image of a Planet That’s Just Like Jupiter, Only Younger”

Light Pollution is Out of Control

The Earth at night. What will it look like 100 years from now? Image credit: NASA-NOAA

Concern over global light pollution is growing. Astronomers are noticing its growing effect on astronomical observations, just as predicted in prior decades. Our artificial light, much of which is not strictly necessary, is interfering with our science.

But there’s more than just scientific progress at stake. Can humanity afford to block out the opportunities for wonder, awe, and contemplation that the night sky provides?

Continue reading “Light Pollution is Out of Control”

Virgin Galactic Flies Italians to Edge of Space for Its First Commercial Trip

Virgin Galactic fliers on VSS Unity
Angelo Landolfi, Walter Villadei and Pantaleone Carlucci hold up an Italian flag while Colin Bennett looks on during their flight in Virgin Galactic's VSS Unity rocket plane. (Virgin Galactic Photo)

After almost two decades of ups and downs, Virgin Galactic sent its first customers to the edge of space aboard its VSS Unity rocket plane.

Today’s 72-minute-long Galactic 01 flight, which took three Italians on a suborbital research mission, marked the start of the company’s commercial operations at Spaceport America in New Mexico.

Continue reading “Virgin Galactic Flies Italians to Edge of Space for Its First Commercial Trip”

Nancy Grace Roman and Vera Rubin Will be the Perfect Astronomical Partnership

Rubin Observatory under a full moon in April 2022. Credit: Rubin Observatory/NSF/AURARubinObs/NSF/AURA

Two of the most important telescopes being constructed at the moment are Vera C. Rubin and Nancy Grace Roman. Each has the capability of transforming our understanding of the universe, but as a recent paper on the arxiv shows, they will be even more transformative when they work together.

Continue reading “Nancy Grace Roman and Vera Rubin Will be the Perfect Astronomical Partnership”

860 Million-Year-Old Quasar Had Already Amassed 1.4 Billion Times the Mass of the Sun

Artist concept of a growing black hole, or quasar, seen at the center of a faraway galaxy. (NASA/JPL-Caltech)
Artist concept of a growing black hole, or quasar, seen at the center of a faraway galaxy. JWST has studied two of them in the very early universe. (NASA/JPL-Caltech)

It wasn’t long after the Big Bang that early galaxies began changing the Universe. Less than a billion years later, they had already put on a lot of weight. In particular, their central supermassive black holes were behemoths. New images from JWST show two massive galaxies as they appeared less than a billion years after the universe began.

Continue reading “860 Million-Year-Old Quasar Had Already Amassed 1.4 Billion Times the Mass of the Sun”

Good News! Astronauts are Drinking Almost all of Their Own Urine

Just a sample of Chris Hadfield's creativity in sharing his space experience. 'Weightless water. This picture is fun no matter what direction you spin it,' he said via Twitter.

In the near future, NASA and other space agencies plan to send crews beyond Low Earth Orbit (LEO) to perform long-duration missions on the Moon and Mars. To meet this challenge, NASA is developing life support systems that will sustain crew members without the need for resupply missions from Earth. These systems must be regenerative and closed-loop in nature, meaning they will recycle consumables like food, air, and water without zero waste. Currently, crews aboard the International Space Station (ISS) rely on an Environmental Control and Life Support System (ECLSS) to meet their needs.

This system recycles air aboard the station by passing it through filters that scrub excess carbon dioxide produced by the crew’s exhalations. Meanwhile, the system uses advanced dehumidifiers to capture moisture from the crew’s exhalation and perspiration and sends this to the Water Purification Assembly (WPA). Another subsystem, called Urine Processor Assembly (UPA), recovers and distills water from astronaut urine. To boost the WPA’s efficiency, the crew integrated a new component called the Brine Processor Assembly (BPA), which recently passed an important milestone.

Continue reading “Good News! Astronauts are Drinking Almost all of Their Own Urine”