There's So Much Going on in This Star-Forming Nebula

A view of the Lupus 3 dark nebula and nearby protostars. Credit: CTIO/NOIRLab/DOE/NSF/AURA/ T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab)

There are some astronomical images that capture rapturous beauty, with their brilliant colors and interplay of shadow and light. A beautiful image can be enough to stir the soul, but in astronomy they often also have a story to tell. An example of this can be seen in a recent image released by NSF’s NOIRLab.

Continue reading “There's So Much Going on in This Star-Forming Nebula”

Remember Those Impossibly Massive Galaxies? They May Be Even More Massive

The first image taken by the James Webb Space Telescope, featuring the galaxy cluster SMACS 0723. Credit: NASA, ESA, CSA, and STScI

The James Webb Space Telescope (JWST) was designed to probe the mysteries of the Universe, not the least of which is what the first galaxies looked like. These galaxies formed during the Epoch of Reionization (aka. “Cosmic Dawn”), which lasted from about 100 to 500 million years after the Big Bang. By observing these galaxies and comparing them to ones that see closer to our own today, astronomers hope to test the laws of physics on the grandest of scales and what role (if any) Dark Matter and Dark Energy have played.

Unfortunately, early into its campaign, the JWST detected galaxies from this period so massive that they were inconsistent with our understanding of how the Universe formed. The most widely-accepted theory for how this all fits together is known as the Lambda Cold Dark Matter (LCDM) cosmological model, which best describes the structure and evolution of the Universe. According to the latest results from the Cosmic Dawn Center, these galaxies may be even more massive than previously thought, further challenging our understanding of the cosmos.

Continue reading “Remember Those Impossibly Massive Galaxies? They May Be Even More Massive”

The Private Axiom-2 Mission is Almost Ready to Fly to the International Space Station

Axiom-2 crew from left to right: Mission Specialist Ali Alqarni, Mission Specialist Rayyanah Barnawi, Commander Dr. Peggy Whitson, and Pilot John Shoffner. (Credit: Axiom Space/Vytal/Chris Zuponcic)

SpaceX’s second private astronaut mission to the International Space Station (ISS), Axiom-2 aka Ax-2, which is sponsored Axiom Space, received a “go” for launch from NASA on May 15 followed by a stamp of approval from Mother Nature on May 19, and finally a completion of the Launch Readiness Review (LRR) on May 20. Liftoff is currently scheduled for May 21 at 5:37pm EDT (2:37pm PDT) from NASA Kennedy Space Center’s historic launch complex 39A, which was the launch site for all crewed Apollo-Saturn V launches starting with Apollo 8, along with Skylab, dozens of Space Shuttle launches, and starting in 2017 with SpaceX.

Continue reading “The Private Axiom-2 Mission is Almost Ready to Fly to the International Space Station”

Not All Type 1a Supernovae are Created Equally

Artist view of a binary system before a type Ia supernova. Credit: Adam Makarenko/W. M. Keck Observatory

Supernovae are brilliant explosions that can, for a time, outshine an entire galaxy. They come in two broad types: Type I and Type II. Type II supernovae are what are known as core-collapse supernovae. They occur when a massive dying star fuses ever heavier elements in its core until it runs out of energy options and its core collapses under its own weight, which triggers the explosion. Type I supernovae occur when…well, it’s complicated. But we’re learning more thanks to a new observation by radio astronomers.

Continue reading “Not All Type 1a Supernovae are Created Equally”

Artemis V is Going to the Moon With Blue Origin

NASA has announced a second lunar lander provider for its Artemis program, choosing Blue Origin’s National Team to deliver astronauts to the Moon’s south pole as early as 2029. Blue Origin’s lander will be part of the Artemis V mission. They join SpaceX, whose Starship is already slated to ferry astronauts to the lunar surface for Artemis III and IV.

Continue reading “Artemis V is Going to the Moon With Blue Origin”

ESO is Using a New System to Allocate Telescope Time. It’s Working Well

ESO's Very Large Telescope is composed of four Unit Telescopes (UTs) and four Auxiliary Telescopes (ATs). Seen here is one of the UTs firing four lasers which are crucial to the telescope's adaptive optics systems. To the right of the UT are two ATs, these smaller telescopes are moveable and work in tandem with the other telescopes to create a unique and powerful tool for observing the Universe.

Most astronomers know the struggle of getting time on the world’s most powerful telescopes. Even though this observing time might literally be the most important thing to their career prospects, there are always more studies than there is time available to perform them. Typically, each telescope system has a panel of experts that determine which proposals will get observational time and which won’t. However, the European Southern Observatory (ESO), based in Germany but with observational telescopes in Chile, decided to try a new proposal review method – peer review.

Continue reading “ESO is Using a New System to Allocate Telescope Time. It’s Working Well”

New Climate Model Accurately Predicts Millions of Years of Ice Ages

Artist's impression of ice age Earth at glacial maximum. Credit: Wikipedia Commons/Ittiz

Earth experiences seasonal changes because of how its axis is tilted (23.43° relative to the Sun’s equator), causing one hemisphere to always be tilted towards the Sun (and the other away) for different parts of the year. However, because of gravitational interactions between the Earth, Sun, Moon, and other planets of the Solar System, Earth has experienced changes in its orientation (obliquity) over the course of eons. This has led to significant changes in Earth’s climate, particularly the recession and expansion of ice sheets due to significant variations in the distribution of sunlight and seasonal changes.

These warming and cooling periods are known as interglacial and glacial periods (“ice ages”). Another interesting change is how the glacial-interglacial cycle has become slower with time. While scientists have long suspected that astronomical forces are responsible, they have only recently been able to test this theory. In a recent study, a team of Japanese researchers reproduced the cycle of glacial periods during the early Pleistocene Epoch (1.6 to 1.2 million years ago) using an improved computer model that confirmed astronomical forces were responsible.

Continue reading “New Climate Model Accurately Predicts Millions of Years of Ice Ages”

An Astronomical First! A Radiation Belt Seen Outside the Solar System

Artist’s impression of an aurora and the surrounding radiation belt of the ultracool dwarf LSR J1835+3259. Credit: Chuck Carter/Melodie Kao/Heising-Simons Foundation)

In 1958, the first satellites launched by the United States (Explorer 1 and 3) detected a massive radiation belt around planet Earth. This confirmed something that many scientists suspected before the Space Age began: that energetic particles emanating from the Sun (solar wind) were captured and held around the planet by Earth’s magnetosphere. This region was named the Van Allen Belt in honor of University of Iowa professor James Van Allen who led the research effort. As robotic missions explored more of the Solar System, scientists discovered similar radiation belts around Jupiter, Saturn, Uranus, and Neptune.

Given the boom in extrasolar planet research, scientists have eagerly awaited the day when a Van Allen Belt would be discovered around an exoplanet. Thanks to a team of astronomers led by the University of California, Santa Cruz (UCSC) and the National Radio Astronomy Observatory (NRAO), that day may have arrived! Using the global High Sensitivity Array (HSA), the team obtained images of persistent, intense radio emissions from an ultracool dwarf star. These revealed the presence of a cloud of high-energy particles forming a massive radiation belt similar to what scientists have observed around Jupiter.

Continue reading “An Astronomical First! A Radiation Belt Seen Outside the Solar System”

Astronomers Want to Build the Next Generation Arecibo Telescope

The Arecibo Radio Telescope. Though it's decommissioned now, Arecibo Data may explain 1977's mysterious Wow! Signal. Image Credit: UCF

The Arecibo Telescope was an amazing tool for astronomers. Built in the early 1960s, it had a 1,000-foot-wide dish and was capable of both receiving and transmitting radio signals. It did radar mapping of near-Earth asteroids, Venus, and the Moon, discovered water at the polar regions of Mercury, searched for alien civilizations, and even send a radio message from Earth to a globular cluster 25,000 light years away. So when it collapsed in 2020, many astronomers wondered if it could be rebuilt.

Continue reading “Astronomers Want to Build the Next Generation Arecibo Telescope”

The Largest Explosion Ever Seen in the Universe

Artist impression of a black hole accretion. Credit: John A. Paice.

Throughout recorded history, humans have looked up at the night sky and witnessed the major astronomical events known as a “supernova.” The name, still used by astronomers, referred to the belief that these bursts of light in the “firmament” signaled the birth of a “new star.” With the birth of telescopes and modern astronomy, we have since learned that supernovae are what occur at the end of a star’s lifecycle. At this point, when a star has exhausted its hydrogen and helium fuel, it experiences gravitational collapse at its center.

This leads to a tremendous explosion that can be seen billions of light-years distant, releasing tremendous amounts of energy and blowing the star’s outer layers off. Thanks to an international team of astronomers led by the University of Southhampton, the most powerful cosmic explosion has been confirmed! The stellar explosion, AT2021lwx, took place about 8 billion light-years away in the constellation Vulpecula and was over ten times brighter than any supernova ever observed and 100 times brighter than all the stars in the Milky Way combined!

Continue reading “The Largest Explosion Ever Seen in the Universe”