Sleek, Sexy Spacecraft to Launch Next Week

GOCE: Spacecraft of the future is here! Credit: ESA

[/caption]
This has to be the sexiest looking spacecraft ever built by humankind. No, it’s not a starship or battle cruiser (although it does look a little like the Eagle spacecraft from the old television show Space: 1999). This sleek, slender, sexy, shiny and sophisticated spacecraft is an Earth-orbiting satellite that will investigate our planet’s gravitational field and map the reference shape of our planet – the geoid – with unprecedented resolution and accuracy. GOCE, or the Gravity field and steady-state Ocean Circulation Explorer is scheduled to launch on Wed. September 10 at 16:21 CEST (14:21 UTC). Why such a sleek design? As GOCE Systems Manager Michael Fehringer says, “Form follows function not only in the world of fashion! To fly low and avoid air drag, the best shape for the satellite to be is long, slender and absolutely symmetrical along the direction of flight.”

ESA’s 1 ton, 5 meter-long spacecraft will be in an extra low orbit (260 km, or 161 miles) and will experience drag from Earth’s upper atmosphere, so smooth and lean helps reduce the friction. Adding to the sleek design is that the solar panels are attached to the long body of the satellite instead of sticking out clumsily and adding to the drag. ESA has a great animation of GOCE in flight. Although the design will help, the spacecraft will need a boost to its orbit occasionally, and has state of the art ion engines.

GOCE on the launchpad.  Credit:  ESA
GOCE on the launchpad. Credit: ESA

GOCE will be in a sun-synchronous orbit, meaning it will be almost always be in sunlight, providing a stable thermal environment for the spacecraft.

The instruments are all placed along the axis of the satellite’s body, adding to its sleekness — check out this great animation. GOCE carries a set of six state-of-the-art high-sensitivity accelerometers to measure the components of the gravity field along all three axes. The data collected will provide a high-resolution map of the geoid and of gravitational anomalies. This will greatly improve our knowledge and understanding of the Earth’s internal structure, and will be used as a much-improved reference for ocean and climate studies, including sea-level changes, oceanic circulation and ice caps dynamics survey. Numerous applications are expected in climatology, oceanography and geophysics, as well as for geodetic and positioning activities.

Here’s an interactive feature to take a closer look at the spacecraft.

Oooo. It’s enough to make a girl purr.

Source: ESA
Also, check out Ian’s article on Astroengine

Weekend SkyWatcher’s Forecast – September 5 – 7, 2008

Greetings, fellow Skywatchers! The weekend has arrived at last and with it… more lunar challenge studies. Are you ready to dance with the pie-eyed piper as we seek out Piccolomini? You’ll find it to the southwest of the shallow ring of Fracastorius on Mare Nectaris’ southern shore. How about seeing double as we take on a few binary stars? It’s time to get out your binoculars and telescopes as we head to the Moon because… Here’s what’s up!

Friday, September 5, 2008 – Tonight let’s discover beauty on our own Moon as we have a look at one of the last lunar challenges of the year which occurs during the first few days of the Moon’s appearance – Piccolomini. You’ll find it to the southwest of the shallow ring of Fracastorius on Mare Nectaris’ southern shore. Piccolomini is a standout lunar feature – mainly because it is a fairly fresh impact crater. Its walls have not yet been destroyed by later impacts, and the interior is nicely terraced. Power up and look carefully at the northern interior wall where a rock slide may have rumbled toward the crater floor. While the floor itself is fairly featureless, the central peak is awesome. Rising a minimum of two kilometers above the floor, it is even higher than the White Mountains in New Hampshire!

Beta LyraeWhen you’ve caught up on your studies, let’s have a look at Beta and Gamma Lyrae, the lower two stars in the “Harp.” Beta is actually a quickly changing variable which drops to less than half the brightness of Gamma in around 12 days. For a few days the pair will seem of almost equal brightness; then you will notice the star closest to Vega begins to fade away. Beta is one of the most unusual spectroscopic stars in the sky, and it is possible that its eclipsing binary companion may be a prototypical “collapsar” (Yep – a black hole!) rather than an actual luminous body.

Double DoubleNow use the telescope for a pair of stars which are very close – Epsilon Lyrae (RA 18 44 20 Dec +39 40 12). Known to most of us as the “Double Double,” look about a fingerwidth northeast of Vega. Even the slightest optical aid will reveal this tiny star as a pair, but the real treat is with a telescope – because each component is a double star! Both sets of stars appear as primarily white, and each pair is very close in magnitude. What is the lowest power that you can use to split them?

Stargazer JackSaturday, September 6, 2008 – Today celebrates the founding of the Astronomical and Astrophysical Society of America. Started in 1899, it is now known as the American Astronomical Society. Also on this date, in 2006, the milestone 1500th episode of Jack Horkheimer’s Star Gazer series aired. The long-running short program on public television has led thousands of people, young and old, to “keep on looking up!” For a lifetime of achievement in public outreach, we salute you, Mr. Horkheimer!

Tonight when you have had a look at the Serpentine Ridge, drop south along the terminator and see if you can identify the very old crater Abulfeda, west of Theophilus.

Abulfeda - W. HigginsThis charming crater was named for Prince Ismail Abu’l Feda, who was a Syrian geographer and astronomer born in the late thirteenth century. Spanning 62 kilometers, its rocky walls show what once was a great depth, but the crater is now filled-in by lava, and drops to a mere 3110 meters below the surface. While it doesn’t appear very large to the telescope, that’s quite big enough to entirely hide Mt. Siple – one of the highest peaks in Antarctica! If conditions are steady, power up and take a look at Albulfeda’s smooth-appearing floor. Can you see many smaller strikes? If the lighting is correct, you might even spot one far younger than the others!

Ranger 9 CamerasSunday, September 7 – For binoculars and telescopes, tonight’s Moon will provide a piece of scenic history as we take an in-depth look at crater Albategnius. This huge, hexagonal, mountain-walled plain will appear near the terminator about one-third the way up from the south limb. This 136 kilometer wide crater is approximately 4390 meters deep, and its west wall will cast a black shadow on the dark floor. Albategnius is a very ancient formation, which partially filled with lava at one point in its development. It is home to several wall craters like Klein (which will appear telescopically on its southwest wall). Albategnius holds more than just the distinction of being a prominent crater – it holds a place in history. On May 9, 1962 Louis Smullin and Giorgio Fiocco of the Massachusetts Institute of technology aimed a red laser toward the lunar surface and Albategnius became the first lunar object to be illuminated by a laser and then detected from Earth!

Ranger 9 ImageOn March 24, 1965 Ranger 9 took this “snapshot” of Albategnius (in the lower right of the lunar image) from an altitude of approximately 2500 kilometers. Companion craters in the image are Ptolemaeus and Alphonsus, which will be revealed for us tomorrow night. Ranger 9 was designed by NASA for one purpose – to achieve a lunar impact trajectory and send back high-resolution photographs and high-quality video images of the lunar surface. It carried no other scientific experiments, and its only destiny was to take pictures right up to the moment of final impact. It is interesting to note that Ranger 9 slammed into Alphonsus approximately 18.5 minutes after the lunar photo was taken. They called that…a “hard landing.”

As the week progresses, watch as the Moon draws closer for a near event with Jupiter by Wednesday. While the pair will still be separated by around two degrees it will still be an awesome sight that doesn’t require a telescope to enjoy!

Wishing you clear skies…

This week’s awesome images are Crater Piccolomini – Credit: Oliver Pettenpaul (LPOD), Beta Lyrae – Credit: Palomar Observatory, courtesy of Caltech, Beta Lyrae – Credit: Palomar Observatory, courtesy of Caltech, Crater Abulfeda – Credit: Wes Higgins, Ranger 9 Image of Lunar Surface and Image of Lunar Surface – Credit: NASA. We thank you!!

Podcast: Science Fiction at Dragon*Con with Plait and Grazier

Dragon*Con Logo

[/caption]

Pamela left Fraser behind (with sorrow) and took on Dragon*Con and the facts (or lack there of) in Science Fiction. Helping her out were special guests Phil Plait and Kevin Grazier.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

Science Fiction at Dragon*Con with Plait and Grazier show notes.

Carnival of Space #69

Earthrise. Image credit: NASA

[/caption]
This week, the Carnival of Space is over at Free Space, the blog of Irene Klotz, a correspondent with Discovery News.

Click here to read the Carnival of Space #69

And if you’re interested in looking back, here’s an archive to all the past carnivals of space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, let me know if you can be a host, and I’ll schedule you into the calendar.

Finally, if you run a space-related blog, please post a link to the Carnival of Space. Help us get the word out.

The Quirks and Quarks Guide to Space



The Canadian Broadcasting Corporation provides the eclectic radio show Quirks & Quarks. In it, the hosts serve up hot scientific topics using everyday language so that a general audience can appreciate the significance of recently unravelled marvels. Using the same approach, Jim Lebans presents his book, ‘ The Quirks and Quarks Guide to Space – 42 Questions (and Answers) About Life, the Universe, and Everything‘. And so, with some irreverence and tongue slightly in cheek, Lebans lays in print details of space for the mere mortals amongst us.

For those in the know, 42 is the answer that Douglas Adams provided for the ultimate question. Lebans knowingly uses this to limit his book to 42 chapters. Each chapter has a title in the form of a question such as “How do you loosen the asteroid belt?”. The chapter’s contents then address the question in quite accurate, scientific detail but with great use of analogies and similes. Such as, for star formation, he states that “Iron is to stars what kryptonite is to Superman and what garlic is to vampires. It can stop them dead and ultimately destroy them”. Or, “Going to the black hole in the centre of the galaxy will be like visiting New York after a lifetime in Wyoming”. Now these may sound facetious but they’re necessary and successful in meeting Lebans’ apparent objective of getting hard science into the average person’s mind. And, the use of a chapter per question keeps things simple and easily re-locatable.

So where’s the value you ask? This book is for those who have next to no scientific training but have an interest. School teachers can use the chapters to build their comprehension before teaching their class. Non-scientists can find out the value and urgency of space exploration (e.g. Chapter 23 – How long until we have to leave the Earth?). And, those people without a glint of technical comprehension but a slimmer of interest would be learning about space and smiling at the same time. What more would you want?

So before you think that science has left the ground without you onboard, check out Jim Lebans’ book, ‘ The Quirks and Quarks Guide to Space – 42 Questions (and Answers) About Life, the Universe, and Everything‘. You’ll be learning and chuckling at the same time.

Read more reviews online, or purchase a copy from Amazon.com.

Cassini Images Ring Arcs Among Two of Saturn’s Moons

Anthe and arc of ring material. Credit: NASA/JPL

NASA’s Cassini spacecraft has imaged a faint, partial ring orbiting with one small moon of Saturn, and has confirmed the presence of another partial ring orbiting with a second moon. This is further evidence that most of the planet’s small, inner moons orbit within partial or complete rings. Recent Cassini images show material, called ring arcs, extending ahead of and behind the small moons Anthe and Methone in their orbits. The new findings indicate that the gravitational influence of nearby moons on ring particles might be the deciding factor in whether an arc or complete ring is formed.

Both Anthe and Methone orbit Saturn in locations, called resonances, where the gravity of the nearby larger moon Mimas disturbs their orbits. Gravitational resonances are also responsible for many of the structures in Saturn’s magnificent rings. Mimas provides a regular gravitational tug on each moon, which causes the moons to skip forward and backward within an arc-shaped region along their orbital paths, according to Nick Cooper, a Cassini imaging team associate from Queen Mary, University of London. “When we realized that the Anthe and Methone ring arcs were very similar in appearance to the region in which the moons swing back and forth in their orbits due to their resonance with Mimas, we knew we had a possible cause-and-effect relationship,” Cooper said.
Arrows indicate the positions of Anthe, at top left, and Methone, at bottom right.  Credit:  NASA/JPL

Scientists believe the faint ring arcs from Anthe and Methone likely consist of material knocked off these small moons by micrometeoroid impacts. This material does not spread all the way around Saturn to form a complete ring, because of the gravitational resonance with Mimas. That interaction confines the material to a narrow region along the orbits of the moons.

This is the first detection of an arc of material near Anthe. The Methone arc was previously detected by Cassini’s Magnetospheric Imaging Instrument, and the new images confirm its presence.

Source: JPL Press Release

Phoenix Probe Says Both Yes and No to Water on Mars

Phoenix's thermal and electroconductivity probe. Credit: NASA/JPL/Caltech/U of AZ

[/caption]

NASA’s Phoenix Mars Lander has a fork-like conductivity probe on it’s robotic arm, and results from the instrument are presenting a bit of a quandary for mission scientists. The thermal and electroconductivity probe has sensed humidity rising and falling in the air the near the lander, but when stuck into the ground, its measurements so far indicate soil that is thoroughly and perplexingly dry. “If you have water vapor in the air, every surface exposed to that air will have water molecules adhere to it that are somewhat mobile, even at temperatures well below freezing,” said Aaron Zent, lead scientist for the probe. While Phoenix has other tools to find clues about whether water ice at the site has melted in the past, the conductivity probe is the main tool for checking for present-day soil moisture.

Preliminary results from the latest insertion of the probe’s four needles into the ground, on Wednesday and Thursday, match results from the three similar insertions in the three months since landing. “All the measurements we’ve made so far are consistent with extremely dry soil,” Zent said. “There are no indications of thin films of moisture, and this is puzzling.”

In below-freezing permafrost terrains on Earth, that thin layer of unfrozen water molecules on soil particles can grow thick enough to support microbial life. One goal for building the conductivity probe and sending it to Mars has been to see whether the permafrost terrain of the Martian arctic has detectable thin films of unfrozen water on soil particles. By gauging how electricity moves through the soil from one prong to another, the probe can detect films of water barely more than one molecule thick.

Three other sets of observations by Phoenix, in addition to the terrestrial permafrost analogy, give reasons for expecting to find thin-film moisture in the soil.

One is the conductivity probe’s own measurements of relative humidity when the probe is held up in the air. “The relative humidity transitions from near zero to near 100 percent with every day-night cycle, which suggests there’s a lot of moisture moving in and out of the soil,” Zent said.

Another is Phoenix’s confirmation of a hard layer containing water-ice about 5 centimeters (2 inches) or so beneath the surface.

Also, handling the site’s soil with the scoop on Phoenix’s robotic arm and observing the disturbed soil show that it has clumping cohesiveness when first scooped up and that this cohesiveness decreases after the scooped soil sits exposed to air for a day or two. One possible explanation for those observations could be thin-film moisture in the ground.

The Phoenix team is laying plans for a variation on the experiment of inserting the conductivity probe into the soil. The four successful insertions so far have all been into an undisturbed soil surface. The planned variation is to scoop away some soil first, so the inserted needles will reach closer to the subsurface ice layer.

“There should be some amount of unfrozen water attached to the surface of soil particles above the ice,” Zent said. “It may be too little to detect, but we haven’t finished looking yet.”

Source: Phoenix News

Atlantis Rolls to the Launch Pad

Space Shuttle Atlantis on the pad. Credit: NASA

[/caption]

Thursday afternoon space shuttle Atlantis rolled out to Launch Pad 39A at the Kennedy Space Center, making it’s slow 5.1 km (3.2 mile) journey along the crawlerway from the Vehicle Assembly Building. NASA mission managers cleared the shuttle’s move after a weather briefing on the status of Tropical Storm Hanna which determined the storm would remain far enough off shore to not cause any problems for the shuttle exposed out on the pad. Atlantis’ seven-member crew are set for an equipment test Friday at Kennedy in preparation for their mission to service NASA’s Hubble Space Telescope. The telescope has already rewritten the books on astronomy and will remain operational for at least another five years following the upgrades. Atlantis is targeted to launch Oct. 8 on mission STS-125. However, another hurricane, Ike, lurks out in the waters of the Atlantic, and could cause problems. But NASA is betting it won’t turn north and head for Florida.

Hubble Servicing Mission No. 4 is the only flight left on NASA’s shuttle manifest that is not headed to the International Space Station. Because Hubble is in a different orbit, Atlantis’ crew cannot seek “safe haven” on the ISS in case of any problems that might prevent a safe re-entry.

Therefore, a second shuttle, Endeavour, will head out to Launch Pad 39 B on Sept. 19, and be ready and on alert for a rescue mission. But if no rescue flight is needed, Endeavour will be moved to pad 39A and prepared for launch on the next ISS assembly mission around Nov. 10.

News Source: NASA

The LHC Will Revolutionize Physics. Can it Revolutionize the Internet Too?

One gigabyte per second? No problem. The LHC computing grid could revolutionize how we handle data over Internet (CERN)

[/caption]
We already know that the Large Hadron Collider (LHC) will be the biggest, most expensive physics experiment ever carried out by mankind. Colliding relativistic particles at energies previously unimaginable (up to the 14 TeV mark by the end of the decade) will generate millions of particles (known and as yet to be discovered), that need to be tracked and characterized by huge particle detectors. This historic experiment will require a massive data collection and storage effort, re-writing the rules of data handling. Every five seconds, LHC collisions will generate the equivalent of a DVD-worth of data, that’s a data production rate of one gigabyte per second. To put this into perspective, an average household computer with a very good connection may be able to download data at a rate of one or two megabytes per second (if you are very lucky! I get 500 kilobytes/second). So, LHC engineers have designed a new kind of data handling method that can store and distribute petabytes (million-gigabytes) of data to LHC collaborators worldwide (without getting old and grey whilst waiting for a download).

In 1990, the European Organization for Nuclear Research (CERN) revolutionized the way in which we live. The previous year, Tim Berners-Lee, a CERN physicist, wrote a proposal for electronic information management. He put forward the idea that information could be transferred easily over the Internet using something called “hypertext.” As time went on Berners-Lee and collaborator Robert Cailliau, a systems engineer also at CERN, pieced together a single information network to help CERN scientists collaborate and share information from their personal computers without having to save it on cumbersome storage devices. Hypertext enabled users to browse and share text via web pages using hyperlinks. Berners-Lee then went on to create a browser-editor and soon realised this new form of communication could be shared by vast numbers of people. By May 1990, the CERN scientists called this new collaborative network the World Wide Web. In fact, CERN was responsible for the world’s first website: http://info.cern.ch/ and an early example of what this site looked like can be found via the World Wide Web Consortium website.

So CERN is no stranger to managing data over the Internet, but the brand new LHC will require special treatment. As highlighted by David Bader, executive director of high performance computing at the Georgia Institute of Technology, the current bandwidth allowed by the Internet is a huge bottleneck, making other forms of data sharing more desirable. “If I look at the LHC and what it’s doing for the future, the one thing that the Web hasn’t been able to do is manage a phenomenal wealth of data,” he said, meaning that it is easier to save large datasets on terabyte hard drives and then send them in the post to collaborators. Although CERN had addressed the collaborative nature of data sharing on the World Wide Web, the data the LHC will generate will easily overload the small bandwidths currently available.

How the LHC Computing Grid works (CERN/Scientific American)
How the LHC Computing Grid works (CERN/Scientific American)

This is why the LHC Computing Grid was designed. The grid handles vast LHC dataset production in tiers, the first (Tier 0) is located on-site at CERN near Geneva, Switzerland. Tier 0 consists of a huge parallel computer network containing 100,000 advanced CPUs that have been set up to immediately store and manage the raw data (1s and 0s of binary code) pumped out by the LHC. It is worth noting at this point, that not all the particle collisions will be detected by the sensors, only a very small fraction can be captured. Although only a comparatively small number of particles may be detected, this still translates into huge output.

Tier 0 manages portions of the data outputted by blasting it through dedicated 10 gigabit-per-second fibre optic lines to 11 Tier 1 sites across North America, Asia and Europe. This allows collaborators such as the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory in New York to analyse data from the ALICE experiment, comparing results from the LHC lead ion collisions with their own heavy ion collision results.

From the Tier 1 international computers, datasets are packaged and sent to 140 Tier 2 computer networks located at universities, laboratories and private companies around the world. It is at this point that scientists will have access to the datasets to perform the conversion from the raw binary code into usable information about particle energies and trajectories.

The tier system is all well and good, but it wouldn’t work without a highly efficient type of software called “middleware.” When trying to access data, the user may want information that is spread throughout the petabytes of data on different servers in different formats. An open-source middleware platform called Globus will have the huge responsibility to gather the required information seamlessly as if that information is already sitting inside the researcher’s computer.

It is this combination of the tier system, fast connection and ingenious software that could be expanded beyond the LHC project. In a world where everything is becoming “on demand,” this kind of technology could make the Internet transparent to the end user. There would be instant access to everything from data produced by experiments on the other side of the planet, to viewing high definition movies without waiting for the download progress bar. Much like Berners-Lee’s invention of HTML, the LHC Computing Grid may revolutionize how we use the Internet.

Sources: Scientific American, CERN

US Astronauts May Have to Leave Space Station in 2012

A Soyuz approaches the ISS. Credit: NASA

[/caption]

Because of stalled legislation that is needed to allow NASA to pay the Russian Space Agency to ferry US astronauts to the International Space Station on board the Soyuz spacecraft, the US section of the space station may have to go unmanned in at least part of 2012. In an interview with CBS’s Bill Harwood, NASA Administrator Mike Griffin said because of the of the three-year lead time needed to build Soyuz vehicles, contracts must be in place by early 2009. But because of Russia’s invasion of Georgia, Congress is unlikely to extend an exemption that allows money to be paid to Russia for high technology goods. Griffin said the problem is very serious, and new legislation would have to be approved within the next few weeks to prevent an interruption in NASA astronauts being on board the ISS.

With the exemption to the Iran-North Korea-Syria Non-Proliferation Act, NASA has been able to buy Soyuz seats for U.S. and international astronauts. While the exemption doesn’t expire until the end of 2011, Congress must approve an extension now in order for NASA to place contracts with the Russians by early next year.

Griffin said NASA has been working all year on getting the needed legislation passed. Congress has been aware of the need for a renewal of the exemption for quite some time, as Griffin talked about the importance of the exemption in his testimony during budget hearings last winter.

NASA also is counting on using the Soyuz to bridge the five-year gap between the end of shuttle operations in 2010 and the debut of the Constellation program in 2015. In addition, NASA still needs the Russian Soyuz for rescue capability for the ISS.

“Where it stands is right now,” Griffin said of the exemption, “it’s dead stalled. Because there’s no legislation which is going to come out of the Congress, other than the continuing resolution package, before they recess to go home for elections. And so right now, we’re just on dead stop. And of course, the invasion of Georgia didn’t help.”

“So here’s what will happen. The first and most obvious possibility is there won’t be any American or international partners on the space station after Dec. 31 of 2011. That’s a possibility. Another possibility is that we will be told to continue flying shuttle and we would be given extra money to do so, in which case our Ares and Orion could be kept on track and we would no longer have a dependence on Russia.

“A third possibility is we could be told to keep flying shuttle, not be given any extra money, in which case we don’t get Ares and Orion anytime soon and we still have a gap, it’s just further out in time.”

Asked if he has any optimism a waiver can be in place in time to avoid a gap in U.S. space station operations, Griffin said simply, “no.”

“My own guess is at this point we’re going to have some period in 2012 where there’s no American or international partner crew on station, that there’s only the Russians there,” he said. “That period always ends three years from when we have a contract with the Russians. So if we can get through all this by June of next year and have a contract with the Russians, then in the latter part of 2012 we can fly a Soyuz flight and restore things to normal.”

A transcript of the entire interview is available from CBS News here. In the interview, Griffin also talks about the upcoming mission to the Hubble Space Telescope and the recently announced delays for the Constellation Program.

Source: CBS News Space Place