An Alien View of the Moon Transiting Earth

Series of images showing the Moon transiting Earth, captured by NASA's EPOXI spacecraft.

[/caption]

Ever wonder what an approaching alien spacecraft would see as it comes within tracking range of our Earth/Moon system? NASA’s EXPOXI mission, which uses the old Deep Impact spacecraft, has created a video of the moon transiting (passing in front of) Earth as seen from the spacecraft’s point of view 50 million kilometers (31 million miles) away. Scientists are using the video to develop techniques to study alien worlds. “Making a video of Earth from so far away helps the search for other life-bearing planets in the Universe by giving insights into how a distant, Earth-like alien world would appear to us,” said astronomer Michael A’Hearn, principal investigator for the Deep Impact extended mission, called EPOXI. The video is pretty amazing and there’s actually two versions of the video; the first one uses a red-green-blue filter, showing how it looks with our human eyes, and the second uses an infrared-green-blue, which makes the vegetation on the land masses show up in red.

And the infrared version:

EPOXI is a combination of the names for the two extended mission components: a search for alien (extrasolar) planets during the cruise to Hartley 2, called Extrasolar Planet Observations and Characterization (EPOCh), and the flyby of comet Hartley 2, called the Deep Impact eXtended Investigation (DIXI).

“To image Earth in a similar fashion, an alien civilization would need technology far beyond what Earthlings can even dream of building,” said Sara Seager, a planetary theorist at the Massachusetts Institute of Technology, Cambridge, Mass., and a co-investigator on EPOXI. “Nevertheless, planet-characterizing space telescopes under study by NASA would be able to observe an Earth twin as a single point of light — a point whose total brightness changes with time as different land masses and oceans rotate in and out of view. The video will help us connect a varying point of planetary light with underlying oceans, continents, and clouds — and finding oceans on extrasolar planets means identifying potentially habitable worlds.” said Seager.

Pretty exciting stuff!

Original News Source: NASA Press Release, with a little help from Bad Astronomy for the videos

Problems Surface For Constellation Program

NASA's new Ares V & Ares I Rockets. Credit: NASA

[/caption]
On the heels of news about NASA engineers who feel the Constellation program is using the wrong kind of rockets comes word that efforts to build the spacecraft which will replace the shuttle and return astronauts to the moon is running behind and over-budget. NASA Watch published a leaked internal NASA document showing the Constellation Program has encountered financial and technical problems, and the Associated Press quoted Doug Cooke, NASA’s deputy associate administrator for exploration as saying the first test flights for Orion may be delayed. However, the delay thus far is only of NASA’s internal goal of having the spacecraft ready by 2013. Cooke said they are still on target for NASA’s public commitment of first test flights by 2015, and returning to the moon by 2020. But unless the space agency can receive more funding, further delays may be inevitable.

The 117-page report shows an $80 million cost overrun this year for just one motor and a dozen different technical problems that the space agency put in the top risk zone, meaning the problems are considered severe. The report put the program’s financial performance in that category, as well.

Some experts say it’s too early to be worried, others say NASA’s design is flawed or the space agency is just repeating mistakes made in developing the space shuttle. But almost everyone agrees that NASA isn’t getting enough funding to do what they’ve been asked to do.

Additional funding from Congress is pending, but in an election year, don’t count on it.

News Sources: NASA Watch, Newsweek/AP

Largest Asteroid in the Solar System

Asteroid Vesta. Image credit: Hubble

[/caption]The largest asteroid in the Solar System is 4 Vesta. Ceres is much more massive, but has been promoted to dwarf planet status, leaving Vesta the largest asteroid. Ceres and Vesta will be orbited and studied by the Dawn spacecraft.

Vesta was first discovered on March 29, 1807 by Heinrich Wilhelm Olbers. The asteroid measures 578 km by 458 km and has a mass of 2.67 x 1020 kg. It has a magnitude of +5.4 to +8.5 and can be easily observed with binoculars on a clear night. It has been seen with the unaided eye on several occasions. Vesta rotates on its axis every 5.342 hours and has an axial tilt of 29º. Temperatures on the surface range from a frigid -188ºC (85 K) to -18ºC (255 K). Hubble images have revealed ancient lava flows. This is a direct contradiction of the belief that asteroids are simple cold, dead rocks floating in space. There is a gigantic impact basin so deep that it exposes the asteroid’s mantle at the South pole. The mantle is thought to be 10 km below the asteroid’s surface.

Several NASA scientists have concluded that Vesta is the parent body of many meteorites. That means that we have parts of only five celestial bodies here on Earth: Earth(obviously), the Moon, Mars, Vesta, and the comet Wild 2. Vesta is the parent body of the eucrite meteorite group. The group formed approximately 4.56 billion years ago. Many of them metamorphosed to temperatures up to 800° C and were brecciated and heated by large impacts into the parent body surface. The less common basaltic, unbrecciated eucrites also formed near the surface, but presumably escaped later brecciation. The cumulate eucrites formed at a depth where metamorphism may have persisted for an undetermined amount of time. These meteorites may have originated from the large impact at the south pole of the asteroid.

The Dawn mission is designed to be the first spacecraft to orbit two non-Earth objects. It arrived in orbit around Vesta on July 15, 2011. It will study the largest asteroid in the Solar System for about a year before leaving orbit for Ceres in 2012. Vesta was chosen as a destination because of its unique qualities. It accounts for 9% of the mass in the main asteroid belt and it is an evolved object(has a mantle, core, and crust). NASA scientists fully expect to make several interesting discoveries from the study of Vesta. Be sure to check back later for updates.

Here’s an article about how Vesta formed fast and early in the Solar System, and some Hubble images of the asteroid.

Here’s more on Vesta from Solar Views, and some images from NASA.

We have recorded a whole series of podcasts about the Solar System at Astronomy Cast. Check them out here.

Sources:
http://research.jsc.nasa.gov/PDF/Ares-6.pdf
http://www.nasa.gov/multimedia/podcasting/jpl-cassini-20080428.html
http://www.nasa.gov/mission_pages/dawn/news/dawn20110716.html
http://www.nasa.gov/mission_pages/dawn/news/dawn20110329.html

A Cold War Meeting in Space 33 Years Ago Today

Deke Slayton and Aleksey Leonov meet in space. Credit: NASA

[/caption]
On July 17, 1975, something momentous and unprecedented happened: two Cold War-rivals met in space. The Apollo-Soyuz Test Project saw spacecraft from the United States and the Soviet Union docking together in space, ushering in a new era of cooperative ventures between the two countries that once were rivals in the “space race.” Preparing for the mission, the astronauts and cosmonauts had to visit each other’s countries for training, and the two space agencies had to share classified information with each other in order for the rendezvous and docking to work successfully. A few years ago, Tom Stafford, one of the American astronauts said the Apollo-Soyuz mission “showed the whole world that if the Soviet Union and America could work together in space, they could work together on the Earth.”

We almost take this cooperation for granted now, as for more than a decade, American astronauts and Russian cosmonauts have been regularly living and working together in Earth orbit, first in the Shuttle-Mir program, and now on the International Space Station. But, before the two Cold War-rivals first met in orbit, such a partnership seemed unlikely. Since Sputnik bleeped into orbit in 1957, there had indeed been a Space Race, with the U.S. and then-Soviet Union driven more by competition than cooperation. When President Kennedy called for a manned moon landing in 1961, he spoke of “battle that is now going on around the world between freedom and tyranny” and referred to the “head start obtained by the Soviets with their large rocket engines.”

But by the mid-70s things had changed. The U.S. had “won” the race to the moon, with six Apollo landings between 1969 and 1972. Both nations had launched space stations, the Russian Salyut and American Skylab. With the space shuttle still a few years off and the diplomatic chill thawing, the time was right for a joint mission.

The Apollo-Soyuz Test Project would send NASA astronauts Tom Stafford, Donald K. “Deke” Slayton and Vance Brand in an Apollo Command and Service Module to meet Russian cosmonauts Aleksey Leonov and Valeriy Kubasov in a Soyuz capsule. A jointly designed docking module fulfilled the main technical goal of the mission, demonstrating that two dissimilar craft could dock in orbit. But the human side of the mission went far beyond that.

Original News Source: NASA Image of the Day

A Match Made in Space

Rocketplane XP spaceplane. Credit: Rocketplane

[/caption]
Rocketplane Global has announced they will be offering the opportunity for people to get married in space. On their upcoming planned suborbital flights, the space tourism company is making available specialty charter flights that include space wedding ceremonies. Billed as “the ultimate high-end celebrity wedding,” the package was first un”veiled” in Japan earlier this month by Rocketplane Japan and First Advantage Travel. With the shirtsleeve cabin environment of the XP spaceplane and its redundant life support systems, the wedding party can wear clothing of their own choosing. No need for “bulky helmets or pressure suits which would detract from the beauty of the ceremony and of course the Wedding Kiss,” said the press release. No mention if the happy couples can then become part of the 60 Mile High Club.

Rocketplane’s press release didn’t provide the price, and the website listed for further information is in Japanese, but Rocketplane’s suggested retail price on their first flights to space is $250,000 a person, so the cost for a bride, groom and wedding party would likely be astronomical, no pun intended.

Reportedly, the special wedding charter flight package includes the actual wedding ceremony in space for the bride, groom and three guests, the space marriage license and certificates, an original wedding dress, full picture and video coverage of the wedding flight and a live broadcast of the ceremony to the ground, premium hotels and transportation, and an original website developed for the wedding customers. Additional options include a space theme honeymoon in Hawaii with chartered jet transportation and a complete VIP lodging and activities package and private tour of the observatories on Mauna Kea.

Wow.

One couple from the US has already signed up for the first space wedding. Check out their website, which says they are planning to be married in 2010.

Rocketplane CEO George French said this package shows how the Rocketplane XP spaceplane can be adapted for a wide variety of unique and special uses. “We are developing a variety of additional charter flight packages involving artists, media and cultural themes as well as additional corporate promotional campaigns,” he said.

While cosmonaut Yuri Malenchenko got married via radio communication while he was on board the International Space Station (his fiancé was on Earth) no wedding ceremony has yet been performed with both the bride and groom in space.

Misuzu Onuki, Rocketplane’s Director of Asian Business Development said, “I believe that the wedding is one of the most important events in our lives, and getting married in the place closest to Heaven will be very appealing and be a key factor in the development of space tourism.”

Additional ways these charter flights could be used if for microgravity research payloads placed in racks with the scientists who developed the payload flying the mission and operating the experiments from on board. Also planned are Teacher in Space flights, which could include one or two teachers and dozens of student microgravity science experiments. A Japanese newspaper is sponsoring a contest for a Teacher in Space flight on board a Rocketplane flight.

Original News Source: Rocketplane Press Release

“Baby Red Spot” May Have Met Demise on Jupiter

The Great Red Spot on Jupiter has been observed for over 150 years, and it doesn’t appear this anti-cyclonic storm is showing any signs of letting up. How does it maintain its power? Well, like a planetary Pac-Man, it “eats up” other storms, zapping them of their power. The sequence of images here from the Hubble Space Telescope shows three different storms on Jupiter: The Great Red Spot, Red Spot Jr. (otherwise known as Oval BA, to the south of GRS), and Baby Red Spot, to the left of GRS in the first two images. Baby got a little too close to big brother GRS, and may have been snuffed out. But GRS keeps on keeping on. These three natural-color Jupiter images were made from data acquired on May 15, June 28, and July 8, 2008, by the Hubble’s Wide Field Planetary Camera 2.

Red Spot Jr. first appeared on Jupiter in early 2006 when a previously white storm turned red. This is the second time, since turning red, it has skirted past its big brother apparently unscathed. More on Jr. or Oval BA over at the BA himself, Phil Plait’s Bad Astronomy.

But poor little Baby Red Spot, which is in the same latitudinal band as the GRS. This new red spot first appeared earlier this year. The baby spot gets ever closer to the GRS in this picture sequence until it is caught up in GRS’s anticyclonic spin. In the final image the baby spot is deformed and pale in color and has been spun to the right (east) of the GRS. The prediction is that the baby spot will now get pulled back into the GRS “Cuisinart” and disappear for good. This is one possible mechanism that has powered and sustained the GRS for at least 150 years.

Each image covers 58 degrees of Jovian latitude and 70 degrees of longitude (centered on 5 degrees South latitude and 110, 121, and 121.

Original News Source: HubbleSite

Geologists Predicted Mars Avalanche

A Mars Avalanche, taken by NASAs HiRISE instrument on the Mars Reconnaisance Orbiter (Credit: NASA/HiRISE)

Remember the amazing images of an avalanche on Mars back in March of this year from the HiRISE camera on the Mars Reconnaissance Orbiter? If not for two geologists studying landforms in Alaska, MRO scientists might not have been on the lookout for such an event, or may not have known what they were seeing. A serendipitous week-long trip to Alaska by Craig Kochel and Jeffrey Trop, geology professors at Bucknell University, helped them predict one of the most important, and breathtaking planetary observations ever made. Witnessing an avalanche, or landslide in action on Mars has helped us realize the Red Planet is still a dynamic, ever-changing planet.

The two geologists were in Alaska for an eight day trip in July 2006, studying geological features and the processes that create them. In preparing for the trip, they looked at photographs of the area they would be hiking through and noticed several features in the photographs that looked familiar. Kochel thought they reminded him of images he’d seen when working on the Viking missions to Mars in the 1970s. In both the photographs and while they were hiking they saw triangle-shaped landforms called “fans” that especially looked like features on Mars. But, at first they didn’t know what they were.

During their short time in Alaska they saw over 200 snow, ice and/or rock avalanches. They realized these events were creating the fan-like features in Alaska, and determined similar avalanches on Mars were creating those same features. Additionally, they believed avalanches could still occur on Mars due to changes in temperatures from sunlight hitting a cliff wall.

At a presentation at the Lunar and Planetary science conference, Kochel and Trop shared their findings and explained that with a bit of luck and good timing, it would be possible to snap photographs of Martian avalanches.

Amazingly, soon afterwards the orbiter sent back images of an ice flow avalanche in action on Mars. Pieces of ice, dust and possibly rocks crashed down from high, steep areas, sending clouds of fine material billowing upwards. The cloud itself was about 180 meters across. The exact cause of the avalanche isn’t known with certainty, but it could be because the sun warmed layers of ice. This was the first time an avalanche had been observed on another world, and was the perfect confirmation of Kochel and Trop’s ideas.

Studies like this show that although Earth and Mars are very different places, in many ways they can be astoundingly similar.

Here are more images of the Mars Avalanche.

Original News Source: Astrobiology Magazine

Snuggling Up to Venus

Artist's conception of Venus Express. Image credit: ESA

ESA’s Venus Express spacecraft will be cozying up to the planet it has been studying for over two years to begin new and more detailed observations of Venus. This week, engineers began executing a series of maneuvers to gradually bring the spacecraft to a new orbit, closer to Venus. In its new, modified orbit the spacecraft will be able to observe unexplored regions and investigate phenomena that were not within its reach before. The maneuvers will be executed through the month of July, settling it into its new orbit by August 4. Venus Express will eventually get close enough to the planet to dip slightly into the atmosphere, testing out its aerobraking capabilities to further alter its orbit, as well as evaluating the density of the upper atmosphere by measuring the drag on the spacecraft with its on-board accelerometers.

Until now, Venus Express has occupied a highly eccentric polar orbit: at its closest point (pericentre), the spacecraft is between 250 km and 400 km from the planet, and at its farthest (apocentre), it is about 66,000 km away. The pericentre is located at 84° north.

This eccentric orbit was designed to facilitate observation of the southern hemisphere for extended periods, while being able to obtain close observations of northern hemisphere and northern polar regions.
The lowering of the Venus Express orbit is the first step in for more ambitious explorations of Venus, especially of its atmosphere.

Venus Express has already found a highly variable quantity of the volcanic gas sulphur dioxide in the atmosphere of the planet. Scientists are trying to determine if this is evidence for active volcanoes on Venus, or by another unknown mechanism affecting the upper atmosphere.

Now, the altitude of the pericentre will now be lowered to between 185 and 300 km. This modification will enable the following science advantages:
• Study of the magnetic field in the northern polar region
• Study of the plasma environment deeper in the ionosphere
• To indirectly deduce the density of the planet’s atmosphere by measuring the force, or drag, exerted by the planet’s atmosphere on the body of the spacecraft as it moves closer to the planet

Venus Express is European Space Agency’s first mission to Venus. Launched in November 2005, the spacecraft arrived at the planet on 11 April 2006 and began science observations within a month. Since then, it has continuously been making new discoveries and revising our knowledge of Venus.

As of April of this year the spacecraft had returned over 1277 gigabits of data to Earth.

Where In The Universe Challenge #12

It’s time once again for another “Where In The Universe” challenge. See if you can guess where in our vast universe this picture was taken. Give yourself extra points if you can name the spacecraft responsible for the image, too. We’ve been getting a lot of positive feedback on this challenge, and readers seem to enjoy this weekly test of their visual space-themed recognition skills. And we’ve been enjoying the reader comments on their successful and the not-so-successful identification of these space images. We’ve learned so much about the universe by the images taken by all the different spacecraft, and scientists can refer again and again images to study the fine details. And sometimes, they see something they didn’t even know was there.

Alright, its time to make your guess, and no peeking below before your guess has been made.

This is an image of Jupiter’s rings, taken by the Voyager 2 spacecraft, from the dark side of Jupiter. The faint ring system is shown in this color composite as two light orange lines protruding from the left side of Jupiter’s limb. This picture was taken in Jupiter’s shadow through orange and violet filters. Voyager 2 was at a range of 1,450,000 kilometers (900,000 miles), and about 2 degrees below the plane of the ring.

We didn’t know Jupiter had rings until the Voyagers found them in 1979. Jupiter’s rings are very dark, unlike Saturn’s rings which contain lots of ice and are very reflective. Not until the Galileo mission which orbited Jupiter from 1995 to 2003, did scientists figure out the rings were made of dust and materials kicked up by meteoroids slamming into Jupiter’s inner moons.


Voyager 1 flew by Jupiter on March 5, 1979, taking more than 18,000 images of planet and its moons. Voyager 2 flew by Jupiter on July 9, 1979, taking about the same number. Between the two Voyager spacecraft, three new moons and a thin, dark ring were discovered. Voyager images of Jupiter’s moon Io revealed active volcanoes, the first ever discovered on another body besides Earth.

How did you do on this challenge?

Japanese SELENE (Kaguya) Lunar Mission Spots Apollo 15 Landing Site (Images)

The Apollo 15 Lunar Module in 1971 (NASA)

The Japanese lunar mission SELENE (Selenological and Engineering Explorer), also known as “Kaguya” has imaged the “halo” left behind in the lunar surface from Apollo 15’s lunar module engine exhaust plume. This is the first time a mission after the Apollo Program has detected such a feature. Apollo 15 landed on the Moon in 1971 in a region called Mare Imbrium, and SELENE’s Terrain Camera (TC) is continuing to reconstruct a 3D view of the region in unprecedented high-resolution.

The Hadley Rille, at the foot of the Apennine Mountains encircling the Mare Imbrium where Apollo 15 landed (NASA/JAXA)
The Hadley Rille, at the foot of the Apennine Mountains encircling the Mare Imbrium where Apollo 15 landed (NASA/JAXA)

Apollo 15 touched down on the lunar surface on July 31st, 1971 with David Scott and James Irwin, to carry out 18.5 hours of lunar extra-vehicular activity. This was the first “J mission” where a greater emphasis was placed on scientific studies. After the lunar module blasted off from the Moon, the lunar astronauts looked back on the launch site to see a fresh “halo” had formed after the surface was exposed to the module’s engine exhaust plume. The NASA astronauts took before and after shots of the landing zone where a lightening of the surface is evident. This halo had not been observed since Apollo 15, until the high resolution Terrain Camera on board SELENE imaged the region.

Apollo 15 halo as observed by SELENE (JAXA)
Apollo 15 halo as observed by SELENE (JAXA)

The image (pictured left) processed by the SELENE mission instrument team appears to show a bright patch in the exact location of the Apollo 15 lunar module landing zone at the foot of the Apennine Mountains around the Mare Imbrium close to “Hadley Rille.” The Hadley Rille is a sinuous rille with a length of 80km and depth of 300m. A “sinuous rille” is a long, narrow, meandering depression in the lunar surface (much like a river basin, minus water). One of the primary mission objectives of Apollo 15 was to understand the origin of this rille. The most likely cause of Hadley Rille is lava flow during early development of the Moon. For the Apollo 15 astronauts, this region will have been an awesome sight, especially being at the base of the towering Apennine Mountains.

Comparison between 3D SELENE landscape and Apollo 15 photo (JAXA/NASA)
Comparison between 3D SELENE landscape and Apollo 15 photo (JAXA/NASA)

The TC instrument has been instrumental in creating 3D visualizations of the lunar surface. In the example left, a comparison of the TC reconstruction and an actual Apollo 15 photograph are compared. Although some of the detail is missing (as the individual rocks are below the 10 meter resolving power of the orbiting camera), the scenes are identical. The SELENE mission (launched in 2007) continues to generate a huge amount of 3D data, contributing to some of the most detailed maps of the lunar surface ever created.

Source: JAXA