Watch a SpaceX Fairing's Fiery Re-Entry Through the Atmosphere

An artist's illustration of the Falcon Heavy. Will it send Mars One colonists to Mars?Image: SpaceX
An artist's illustration of the Falcon Heavy. Credit: SpaceX

During the recent ViaSat-3 launch on a Falcon Heavy rocket, SpaceX released the protective spacecraft fairing at the highest altitude ever attempted. Therefore, the fairing reached incredible speeds during its fiery re-entry through the Earth’s atmosphere. Fortunately, there was a camera on board so we could watch. At one point, the one half of the fairing was traveling 15 times faster than the speed of sound, releasing a trail of plasma in its wake as it returned to Earth.

Continue reading “Watch a SpaceX Fairing's Fiery Re-Entry Through the Atmosphere”

Thirsty on the Moon? Just Throw Some Regolith in the Microwave

A crucible that could be used to extract water from Lunar regolith. Credit: Cole, et al

No matter where we go in the universe, we’re going to need water. Thus far, human missions to Earth orbit and the Moon have taken water with them. But while that works for short missions, it isn’t practical in the long term. Water is heavy, and it would take far too much fuel to bring sufficient water to sustain long-term bases on the Moon or Mars. So we’ll have to use the water we can extract locally.

Continue reading “Thirsty on the Moon? Just Throw Some Regolith in the Microwave”

Newborn Star Surrounded By Planet-Forming Disks at Different Angles

This artist's concept is based on Hubble Space Telescope images of gas-and-dust disks around the newborn star TW Hydrae. HST images show shadows sweeping across the disks encircling the system. These shadows are probably from slightly inclined inner disks that block starlight from reaching the outer disk. The disks are slightly inclined to each other due to the gravitational pull of unseen planets warping the disk structure. Credits ARTWORK: NASA, AURA/STScI for ESA, Leah Hustak (STScI)
This artist's concept is based on Hubble Space Telescope images of gas-and-dust disks around the newborn star TW Hydrae. HST images show shadows sweeping across the disks encircling the system. These shadows are probably from slightly inclined inner disks that block starlight from reaching the outer disk. The disks are slightly inclined to each other due to the gravitational pull of unseen planets warping the disk structure. Credits ARTWORK: NASA, AURA/STScI for ESA, Leah Hustak (STScI)

One of the great questions about our solar system is: what was it like as it formed? We know that a protosolar nebula birthed the Sun and planets. And, we know planets in our solar system have slightly different orbital inclinations, probably due to some interesting dynamics in the birth crèche. Why is that? The answer may be in a slightly weird-looking protoplanetary disk circling the newborn star TW Hydrae.

Continue reading “Newborn Star Surrounded By Planet-Forming Disks at Different Angles”

Solar Flares Could Have Helped Life Get Started on Earth

Solar flares pose a major hazard to electronics and infrastructure in Low Earth Orbit, but they may have played a role in kick-starting life on Earth. Credit: NASA/SDO/J. Major

Stars emit powerful flares that can be deadly for any burgeoning life on nearby planets. Images from spacecraft that monitor the Sun show these flares in glorious, horrifying detail. But the flares from the Sun are mere nuisances compared to some stars. Some stars produce catastrophic superflares, which can be tens of thousands of times more energetic than the Sun’s. That much energy can sterilize a planet’s surface.

But new research shows that a certain amount of flaring activity on the Sun could’ve been beneficial. It could’ve kick-started life on Earth.

Continue reading “Solar Flares Could Have Helped Life Get Started on Earth”

It’s Surprisingly Easy to Hurl Rocks From Mars Into Space

A Martian meteorite, designated Northwest Africa (NWA) 7034 and nicknamed "Black Beauty," weighing approximately 11 ounces. Credit: NASA,

Of the thousands of meteorites found on Earth, about 188 have been confirmed to be from Mars. How did they get here? Over the tumultuous history of our Solar System, asteroids have smashed into Mars with such force, the debris was blasted off the planet and then drifted through space, eventually entering Earth’s atmosphere, and surviving the journey to the ground.

Astronomers once thought it was a complex process, with only the most powerful impacts capable of throwing rocks from Mars into space. But new research shows that it takes much less pressure than previously believed, which means there could be more chunks of Mars floating in space and on their way to Earth.

Continue reading “It’s Surprisingly Easy to Hurl Rocks From Mars Into Space”

Dark Energy Was Always Present, Everywhere and at Every Time

X-ray (top row) and optical pseudo-color (bottom row) images of three low mass clusters identified in the eFEDS survey data. The highest redshift cluster come from a time when the Universe was approximately 10 billion years younger than today. The cluster galaxies in that case are clearly much redder than the galaxies in the other two clusters. These galaxy clusters were used to determine th extent of dark matter across space and time. Courtesy: eRosita
X-ray (top row) and optical pseudo-color (bottom row) images images of three low mass clusters identified in the eFEDS survey data. The highest redshift cluster come from a time when the Universe was approximately 10 billion years younger than today. The cluster galaxies in that case are clearly much redder than the galaxies in the other two clusters. These galaxy clusters were used to determine th extent of dark matter across space and time. Courtesy: eRosita

The Force is with us, according to cosmologists working to understand a mysterious “something” that’s making the universe expand. Its name? Dark energy. And, it turns out that it’s been present everywhere throughout cosmic history.

Continue reading “Dark Energy Was Always Present, Everywhere and at Every Time”

Astronomers are Starting to Find the Wreckage Left Over from the First Stars in the Universe

Using ESO’s Very Large Telescope (VLT), researchers have found for the first time the fingerprints left by the explosion of the first stars in the Universe. They detected three distant gas clouds whose chemical composition matches what we expect from the first stellar explosions. These findings bring us one step closer to understanding the nature of the first stars that formed after the Big Bang.
This artist’s impression shows a distant gas cloud that contains different chemical elements, illustrated here with schematic representations of various atoms. Using ESO’s Very Large Telescope, astronomers have detected three distant gas clouds whose chemical composition matches what we expect from the explosions of the first stars that appeared in the Universe. These early stars can be studied indirectly by analysing the chemical elements they dispersed into the surrounding environment after they died in supernova explosions. The three distant gas clouds detected in this study are rich in carbon, oxygen, and magnesium, but poor in iron. This is exactly the signature expected from the explosions of the first stars.

The first stars were odd ducks. Nobody’s observed them yet (although astronomers are hopeful JWST might spot them someday) but their ghosts remain. Born more than 13.5 billion years ago, they were very different from most of those we know today. These were massive monsters made mostly of hydrogen and helium. And, when they exploded as supernovae, their “starstuff” got scattered to space. Astronomers have now found the chemical remains of those stars in three distant gas clouds observed by European Southern Observatory’s Very Large Telescope.

Continue reading “Astronomers are Starting to Find the Wreckage Left Over from the First Stars in the Universe”

Is This Nearby Asteroid a Chunk of the Moon?

Illustration of Asteroid (Artist’s Impression). Credit: N. Bartmann (ESA/Webb), ESO/M. Kornmesser and S. Brunier, N. Risinger

The Moon dominates our view of the night sky. But it’s not the only thing orbiting Earth. A small number of what scientists call quasi-satellites also orbit Earth.

One of them is called Kamo’oalewa, and it’s a near-Earth asteroid. It’s similar to the Moon in some respects. Could it be a chunk of the Moon?

Continue reading “Is This Nearby Asteroid a Chunk of the Moon?”

Gravitational Lensing is Helping to Nail Down Dark Matter

Using the gravitational lensing technique, a team was able to examine how light from distant quasar was affected by intervening small clumps of dark matter. Credit: NASA/ESA/D. Player (STScI)

According to the most widely-accepted cosmological model, the majority of the mass in our Universe (roughly 85%) consists of “Dark Matter.” This elusive, invisible mass is theorized to interact with “normal” (or “visible”) matter through gravity alone and not electromagnetic fields, neither absorbing nor emitting light (hence the name “dark”). The search for this matter is ongoing, with candidate particles including Weakly-Interacting Massive Particles (WIMPs) or ultralight bosons (axions), which are at opposite extremes of the mass scale and behave very differently (in theory).

This matter’s existence is essential for our predominant theories of gravity (General Relativity) and particle physics (The Standard Model) to make sense. Otherwise, we may need to radically rethink our theories on how gravity behaves on the largest of scales (aka. Modified Gravity). However, according to new research led by the University of Hong Kong (HKU), the study of “Einstein Rings” could bring us a step closer to understanding Dark Matter. According to their paper, the way Dark Matter alters the curvature of spacetime leaves signatures that suggest it could be made up of axions!

Continue reading “Gravitational Lensing is Helping to Nail Down Dark Matter”

Black Hole Event Horizons Can Get So Big it'll Boggle Your Imagination

An artist’s impression of an accretion disk rotating around an unseen supermassive black hole. Credit: Mark A. Garlick/Simons Foundation

In honor of Black Hole Week, NASA’s Scientific Visualization Studio has released an amazing video showing how several supermassive black holes scale with our solar system. It’s definitely worth checking out because it’s an excellent example of just how overwhelmingly huge some black holes are.

NASA Animation Sizes Up the Biggest Black Holes
Continue reading “Black Hole Event Horizons Can Get So Big it'll Boggle Your Imagination”