Successful Test Firing of Orion Jettison Motor (Video)

Successful test-firing of Orion's jettison engines (Aerojet)

[/caption]
It looks like the hardware is gradually slotting into place for the development of the Orion capsule in NASA’s Constellation Program. On July 17th, the ultimate “ejection seat” was tested by NASA and rocket contractor Aerojet: The Orion jettison motor. Should there be an emergency during Ares rocket/Orion capsule during launch, the Orion capsule will have the capability to eject (whether it is on the launchpad or travelling through the atmosphere), ensuring the safety of the crew. This is the first safety measure of its kind, so a successful engine test can only help to boost confidence in the technology behind Orion…

Although there are concerns for the Constellation Program funding and technology-wise, there is good news coming from the development of NASA’s new Orion crew module. The first full-scale test firing of the jettison motor was successful, boosting confidence in the new safety system the capsule will have installed. Later this year, a full-scale “Pad Abort-1” test is scheduled in the New Mexico desert, where a mock Orion will be blasted clear of a model launchpad (up to a mile in altitude) to test the effectiveness of the system. Tests are already under way to deduce whether a dry or wet touch-down will be carried out by the Orion capsule using cadavers (human corpses) as crash-test dummies.

The jettison motor was tested at the Astrojet facility in Sacramento, California, which marks the start of a series of developmental tests before the finished article is integrated into the mock Orion module to begin the New Mexico tests. During last weeks test firing, engineers were testing acoustic, vibration and shock effects on the engines. It appears everything ran smoothly, indicating the jettison system is close to system-level demonstration.

View the test-firing on the Constellation Project site »

This is a critical stage in the development of Orion. Since the Columbia disaster in 2003, NASA has felt pressure to ensure the safety of their astronauts. Although strict guidelines are in place, space travel remains a risky business where tough decisions need to be made. Installing an Orion jettison system will be a huge piece of mind for mission controllers and Constellation astronauts should there be launch complications on the pad or as Ares powers through the atmosphere.

Source: NASA

The “Jewel Box” by Don Goldman

Jewel Box by Don Goldman

[/caption]

Since it was first observed in a half inch diameter spy glass by Abbe Nicholas Louis de Lacaille during his visit to South Africa in 1751-2, the Kappa Crucis star cluster (NGC 4755) has intrigued and and confounded astronomers since. Today let’s open John Herschel’s ‘casket of variously coloured precious stones’ and take a closer look at the “Jewel Box”…

Situated about 7500 light years away near a vast, dark cosmic dust cloud known as the “Coal Sack”, the Kappa Crucis star cluster has a Bayer designation even though it is a cluster instead of an individual star. Just one look at this colorful array is to understand how it came to be known as the Jewel Box. Sprinkled across 20 light years of space and maybe perhaps only 7.1 million years old, it is home to red, white and blue giant stars alike. If its brightest star were at the center of our own solar system, it would shine 83,000 times brighter than Sol!

The bright orange star is Kappa Crucis, a standout amongst its hot, vivid blue members. A very young star gone into its red supergiant stage? During mid-1862 a man named Francis Abbott began studying the Jewel Box and his observing notes say; “Certain changes that are apparently taking place in the number, position, and colour of its component stars.” This was some pretty radical thinking since he was going up against the notes of the likes of John Herschel and George Airy. But, as so often is the case, sometimes one astronomer can spot what another one can’t and some 10 years later H.C. Russell took Abbott’s notes to heart – measuring and cataloging 130 of the cluster’s stars. Despite extreme criticism, another observer named R.T. Innes also claimed color change as noted in the classic work “Celestial Objects for Common Telescopes”.

Of course, study did not end there and it went into the early 1900s with Trumpler and then Harlow Shapley. The first significantly important astrophysical paper on this cluster appeared in 1958 and was published by Halton Arp and Cecil van Sant who were trying to find out more about galactic supergiant stars. “The three brightest stars are supergiants… and the red star, are all members of the cluster, then NGC 4755 must be somewhat like h and χ Persei… Since these types of clusters are rare, observational material sufficient to derive a colour-magnitude diagram was obtained.” However, as more stars were revealed and studied, the more confusing the designations became! The years progressed and NGC 4755 became even more understood – and better cataloged.

According to studies of helium, carbon, nitrogen and oxygen abundances done by G. Mathys (et al) “After consideration of the CN abundances in this sample, there is no clear evidence of internal mixing. Only three stars among the non-supergiants seem to show a nitrogen enhancement. Two of them have a fairly low projected equatorial velocity (admittedly, they may be rapid rotators seen pole-on); the third one is a definite fast rotator. In the lower gravity stars some kind of mixing has apparently occurred. The supergiants do not differ significantly from the other programme stars in their respective helium contents. The mean helium abundance for each cluster is close to the standard value, (He/H).”

Studying variable stars within open clusters is extremely important. They are clues as to distance and evolution! In young clusters like the Jewel box, the brighter stars should be variables and should be blue. They should also have started evolution away from main sequence, unlike the low mass stars who just quietly burn away their hydrogen. As we know, one of the principle variable types are the Beta Cepheid stars and studies done by Stankov (et al) show the detection of four new variable stars in NGC 4755. “We give frequency solutions as indicators of the time-scales and amplitudes of the pulsations. NGC 4755-116 is probably a B2 dwarf with a period of 4.2 d whose variability is caused by a spot or g-mode pulsation. NGC 4755-405 can be considered as a new β Cephei star with two pulsation frequencies. For NGC 4755-215 we found one frequency and for NGC 4755-316 three pulsation frequencies; we suggest that both are new slowly pulsating B stars of short period.” These variations may be caused by radial pulsations from an instable hydrogen core and even more studies are needed.

But is there more? Yes. Very recent studies done by C. Bonatto (et al) show the dynamical state of NGC 4755. “We explore the possibility that, at the cluster age, some main sequence and pre-main sequence stars still present infrared excesses related to dust envelopes and proto-planetary discs. The core is deficient in PMS stars, as compared with MS ones. NGC 4755 hosts binaries in the halo but they are scarce in the core. Compared to open clusters in different dynamical states studied with similar methods, NGC 4755 fits relations involving structural and dynamical parameters in the expected locus for its age and mass.”

Did NGC 4755 form from the same molecular cloud? Is it two overlapping clusters? Does the proximity of the Coal Sack influence its visual properties? No matter what the science is behind it, the light that you see now left about the same time the Great Pyramids of Egypt were being built. Let the words of Burnham ring the loudest: “…a brilliant and beautiful galactic duster ranking among the finest and most spectacular objects of the southern Milky Way… The cluster lies in a rich and remarkable region in the Heavens, well worth exploring with low power telescopes and instruments of the rich-field type.”

This week’s awesome image was done by Don Goldman and taken at Macedon Ranges Observatory. We thank you!

NASA’s Use of Cadavers to Test the Orion Capsule

Orion Crew Capsule. Credit: Howstuffworks.com

[/caption]
NASA is debating whether the new Orion capsule should land in the water, like Apollo, or on land, similar to how the Russian Soyuz capsule returns to Earth. To help them determine the potential for human injuries with each possible landing scenario, NASA has used human cadavers during their tests. At first, this revelation may seem quite morbid or even gruesome. But as Keith Cowing said in his expose article on Space Ref and NASA Watch on this subject, “Given the potentially hazardous nature of the tests required, cadavers must be used in the place of living persons.” Sometimes, crash-test dummies or computer simulations don’t provide the crucial information needed, such as the forces on the spinal cord or internal organs. If NASA doesn’t have that information, they can’t get accurate test results. Living test subjects could possibly be killed during the landing tests. Imagine the headlines if that happened. So they have used cadavers. The cadavers NASA used were donated to science to be used for exactly this type of purpose, and NASA, of course, went through the proper channels to obtain the cadavers and treats them in an ethical manner. So while this may seem a little grisly, NASA is doing the right thing.

Marc Carreau from the Houston Chronicle also wrote an article on this subject, and he interviewed David Steitz, a spokesman for NASA’s medical division. “It’s a socially awkward topic,” Steitz said. “The bodies are all carefully handled through all of the tests. We follow ethical medical procedures with these bodies that have been donated for science.”

Three human bodies were used during testing last year, said NASA seat engineer Dustin Gohmert, to help determine the potential for serious human injury during descent and landing. “The interface between the spacesuit and the seats is relatively complex, much more so than in an automobile, even one from the racing industry,” Gohmert said. “The (forces) we anticipate have never been studied before. We are using this research to help define and refine the suits and the seats.”

Tests using human bodies has been done for previous spacecraft, as well.

Cowing received this statement from NASA on the use of cadavers:

“In limited cases, postmortem human subject tests may be performed when insufficient data are available from simulations that use dummies or from mathematical modeling of the human body responses. This is particularly critical where the dynamic responses of internal organs and soft tissue must be evaluated. Using a combination of test methods, the engineering and scientific teams at NASA are able to enhance astronaut safety by designing landing attenuation systems that will minimize accelerations imparted to the crew and significantly reduce the potential for injuries.”

Personally, I could imagine donating my body for this type of research. Even if I never get to fly to space when I’m alive, I’d be proud to help the rest of the human race get there and return safely by giving my body for tests such as this.

News Sources: NASA Watch, Space Ref, Houston Chronicle

Hubble Survey of Gravitational Lenses Yields Measure of Dark Matter in Distant Galaxies

Hubble Space Telescope image shows Einstein ring of one of the SLACS gravitational lenses, with the lensed background galaxy enhanced in blue. A. Bolton (UH/IfA) for SLACS and NASA/ESA.

[/caption]
An international team of astronomers have compiled the largest-ever single collection of “gravitational lens” galaxies, and their survey yielded information on the masses of galaxies, including an inference of the amount of dark matter. Gravitational lensing occurs when two galaxies happen to aligned with one another along our line of sight in the sky. The gravitational field of the nearer galaxy distorts the image of the more distant galaxy into multiple arc-shaped images. Sometimes this effect even creates a complete ring, known as an “Einstein Ring.” The findings of this survey helps settle a long standing debate over the relationship between and mass and luminosity in galaxies.

Using the Advanced Camera for Surveys on the Hubble Space Telescope to image galaxies that had been identified as gravitational lens galaxies by the Sloan Digital Sky Survey, the team was able to measure the distances to both galaxies in each “lensing” set, as well as measure the masses of each galaxy.

Gravitational lensing creates a “mirage” of a ring, and the Einstein ring images can be up to 30 times brighter than the image of the distant galaxy would be in the absence of the lensing effect. By combining Hubble and Sloan data into the Sloan Lens ACS (or SLACS) Survey, the team was able to make a mathematical model describing the lensing effect and use that model to illustrate what we would see if we could remove the lensing effect.

Animation of the lensing effect.

“The SLACS collection of lenses is especially powerful for science,” said Adam Bolton from the University of Hawaii, lead author of two papers describing these latest results. “For each lens, we measured the apparent sizes of the Einstein rings on the sky using the Hubble images, and we measured the distances to the two galaxies of the aligned pair using Sloan data. By combining these measurements, we were able to deduce the mass of the nearer galaxy.”

By considering these galaxy masses along with measurements of their sizes, brightnesses, and stellar velocities, the SLACS astronomers were able to infer the presence of “dark matter” in addition to the visible stars within the galaxies. Dark matter is the mysterious, unseeable material that is the majority of matter in the universe. And with such a large number of lens galaxies across a range of masses, they found that the fraction of dark matter relative to stars increases systematically when going from galaxies of average mass to galaxies of high mass.

Mosaic of the SLACS galaxies.  Credit:  SLACS and NASA/ESA.
Mosaic of the SLACS galaxies. Credit: SLACS and NASA/ESA.

Albert Einstein predicted the existence of gravitational lenses in the 1930’s, but the first example was not discovered until the late 1970s. Since then, many more lenses have been discovered, but their scientific potential has been limited by the disparate assortment of known examples. The SLACS Survey has significantly changed this situation by discovering a single large and uniformly selected sample of strong lens galaxies. The SLACS collection promises to form the basis of many further scientific studies.

Original News Source: University of Hawaii

How do you Weigh a Supermassive Black Hole? Take its Temperature

A composite image of Chandra and Hubble Space Telescope observations of giant elliptical galaxy NGC 4649 (ASA/STScI/NASA/CXC/UCI/P. Humphrey et al.)

[/caption]
Working out the mass of huge black holes, like the ones hiding in the centre of galactic nuclei, is no easy task and attempts are being made to find novel ways to weigh them. Using data from the Chandra X-ray Observatory, two scientists have confirmed a theory they conceived ten years ago, that the supermassive black holes in the centre of galaxies strongly influence the nature of the gases surrounding them. So, acting like a remote thermometer, Chandra is being used to probe deep into the neighbourhood of these exotic objects, gauging their masses very accurately…

The supermassive black hole at the centre of NGC 4649 is a monster. It is about 3.4 billion times the mass of the Sun and a thousand times bigger than the black hole at the centre of the Milky Way. This fact makes it an ideal candidate to test new methods of measuring the mass of black holes to see how the results correlate with traditional methods. With a high degree of accuracy, scientists have proven that a previously untested theory of weighing black holes works by using the Chandra X-ray telescope.

Until now, supermassive black hole masses have been measured by observing the motions of stars and gas deep inside galactic nuclei, now astronomers are using the gravitational influence of the black hole over the hot gas trapped around the singularity. As the gas is pulled slowly toward the black hole, it is compressed and heated. The bigger the black hole, the higher the peak temperature. Chandra has been used to measure the peak temperature of the gas right in the centre of NGC 4649 to find the derived mass is identical to the mass previously measured by traditional means.

Fabrizio Brighenti from the University of Bologna in Italy, and William Mathews from the University of California at Santa Cruz have been working on this research for the past decade. It is only now, with the availability of a telescope as powerful as Chandra that these observations have been possible.

It was wonderful to finally see convincing evidence of the effects of the huge black hole that we expected. We were thrilled that our new technique worked just as well as the more traditional approach for weighing the black hole.” – Fabrizio Brighenti

The black hole inside NGC 4649 appears to be in a dormant state; it doesn’t seem to be pulling in material toward its event horizon very rapidly and it isn’t generating much light as it slowly grows. Therefore, using Chandra to indirectly measure its mass by sensing the peak temperature of surrounding matter is required to weigh it. In the early universe, huge black holes such as these will have generated dramatic displays of light. Now, in the local Universe, such black holes lead a more retiring life, making them difficult to observe. This prospect excites the lead scientist on the project, Philip Humphrey. “We can’t wait to apply our new method to other nearby galaxies harboring such inconspicuous black holes,” he said.

Source: Physorg.com

Mars Arctic in 3D from Phoenix

OK, everyone: get out your funky 3-D glasses for a whole new look at Mars! We’ve seen the smooth plains of Meridiani from Opportunity in 3-D; we’ve gazed upon the rocky terrain of Gusev Crater from Spirit in more than two dimensions. But now it’s time to feast your eyes on Mars’ arctic tundra as its never been seen before: in super frozen 3-D from the Phoenix lander! The image above shows a color, stereoscopic 3D view of the Martian surface near the lander, and is one of Phoenix’s workplaces called “Wonderland.” But wait! There’s more…..


This 3-D view is from an image acquired by Phoenix’s Surface Stereo Imager on Sol 33, the 33rd Martian day of the mission (June 28, 2008). Phoenix’s solar panel is seen in the bottom right corner of the image.


Here’s a close up view of where all the action has been taking place recently: the trench called “Snow White.” The hole to the left of the trench, seen in the upper left of the image, is informally called “Burned Alive. This image was taken on Sol 22, but recently, Phoenix has scooped and rasped the area in an effort to get “shaved ice” samples.

Here’s a great touchy-feely 3-D image (don’t you just want to reach out and touch that rock?) The largest rock seen in this image is called “Midgard.” The edge of Phoenix’s deck is seen in the bottom right corner of the image.

There’s lots more 3-D loveliness at the Phoenix Image Gallery. Have fun!

Super-Sensitive, Ultra-Small Device Heightens Infrared Capabilities

Physics Prof. Michael Gershenson with laboratory equipment used to fabricate ultra-sensitive, nano-sized infrared light detector. Credit: Carl Blesch

[/caption]
A tiny new circuit could make a big difference in the way astronomers can see infrared light. This newly developed nano-sized electronic device is 100 times smaller than the thickness of a human hair, and is sensitive to faint traces of light in the far-infrared spectrum, well beyond the colors humans see. Infrared light makes up 98% of the light emitted since the Big Bang. Better detection methods with this new device should provide insights into the earliest stages of star and galaxy formation almost 14 billion years ago.


“In the expanding universe, the earliest stars move away from us at a speed approaching the speed of light,” said Michael Gershenson, professor of physics at Rutgers and one of the lead investigators. “As a result, their light is strongly red-shifted when it reaches us, appearing infrared.”

But Earth’s thick atmosphere absorbs far-infrared light, and ground-based radio telescopes cannot detect the very faint light emitted by these far-away stars. So scientists are proposing a new generation of space telescopes to gather this light. But new and better detectors are needed to take the next step in infrared observing.

Currently bolometers are used, which detect infrared and submillimeter waves by measuring the heat generated when photons are absorbed.

“The device we built, which we call a hot-electron nanobolometer, is potentially 100 times more sensitive than existing bolometers,” Gershenson said. “It is also faster to react to the light that hits it.”
The new device is made of titanium and niobium metals. Its about 500 nanometers long and 100 nanometers wide and was made using techniques similar to those used in computer chip manufacturing. The device operates at very cold temperatures – about 459 degrees below zero Fahrenheit, or one-tenth of one degree above absolute zero on the Kelvin scale.

Photons striking the nanodetector heat electrons in the titanium section, which is thermally isolated from the environment by superconducting niobium leads. By detecting the infinitesimal amount of heat generated in the titanium section, one can measure the light energy absorbed by the detector. The device can detect as little as a single photon of far infrared light.

“With this single detector, we have demonstrated a proof of concept,” said Gershenson. “The final goal is to build and test an array of 100 by 100 photodetectors, which is a very difficult engineering job.”

Rutgers and the Jet Propulsion Laboratory are working together to build the new infrared detector.
Gershenson expects the detector technology to be useful for exploring the early universe when satellite-based far-infrared telescopes start flying 10 to 20 years from now. “That will make our new technology useful for examining stars and star clusters at the farthest reaches of the universe,” he said.

The team’s orginal paper can be found here.
Original News Source: Rutgers State University

How Future Missions Could Detect Organisms Inside Rocks on Mars

Jarosite in New Zealand. Credit: Michelle Kotler

[/caption][/caption]
For a geologist, looking inside a rock is essential to help determine the makeup and history of the rock sample. That’s why geologists have rock hammers, and also why the Mars Exploration Rovers, Spirit and Opportunity, have their Rock Abrasion Tool. For future missions to Mars, or even for a sample return mission, one of the main goals will be to look for signs of life, past or present, that might be hiding inside the rocks. Scientists are working on a new, simple technique for detecting biological and pre-biotic molecules that become trapped inside the minerals in rocks.

This new technique utilizes a laser-based optical and chemical imager or LOCI. A single laser shot vaporizes a small portion of the surface into individual ions. These pass through a mass spectrometer, which can identify each ion by how much mass and charge it has. The great thing about this technique is that the sample requires no preparation: just shoot and detect.

Previous techniques for required that the minerals be dissolved in a solution or mixed in with some other medium, which dilutes the sample and runs the risk of introducing contamination.

Jill Scott of Idaho National Laboratory with the laser-based optical and chemical imager (LOCI). Credit: Idaho National Lab
Jill Scott of Idaho National Laboratory with the laser-based optical and chemical imager (LOCI).  Credit: Idaho National Lab
This procedure was tested on Earth using samples of the mineral jarosite. Jarosite is a yellowish-brown sulfate mineral containing iron, potassium and hydroxide. It is found in places around the world such as southern California beaches and volcanic fields in New Zealand. It forms only in the presence of highly acidic water.

In 2004, jarosite was discovered on Mars by the rover Opportunity. Scientists immediately recognized the find as clear evidence for past water on the red planet.

But there is something else about jarosite that makes it interesting. On Earth, for jarosite to form, oxidation of the rock must occur – usually the rock is pyrite (ferrous sulfide). And on Earth, the oxidation reaction is usually performed by certain “rock-eating” microorganisms.

Scientists say the rate of the jarosite formation would be extremely slow without microbes, as well as without the presence of water.

Whether jarosite can form without the assistance of these microbes is very difficult to say, since every corner of Earth is occupied by little bugs of some sort or another.

And yet, there remains the tantalizing possibility that jarosite on Mars exists because of some little, rock-eating microbes. If so, remnants of these organisms may be locked in the mineral. And there’s only one way to find out: look inside Mars rocks.

Right now, this method couldn’t be used on the next bigger Mars rover, the Mars Science Laboratory, which will hopefully launch in 2009. The LOCI instrument is just too big and too complex to use remotely, said David Beaty, chief scientist of the Mars Exploration Directorate at the Jet Propulsion Laboratory.

But it could be used on a sample return mission. But hopefully, scientists will be able to develop a smaller, simpler version to be used on future missions to look for signs of life in rocks on Mars.

Original News Source: Astrobiology Magazine

X-Ray Satellite Discovers Overlooked Nova

Novae are kind of a big deal in the Universe, so you’d think that when one occurred we would notice, especially if it were visible to the naked eye. A star that exploded in June of 2007 in the constellation of Puppis, though, slipped by the network of professional and amateur astronomers that are dedicated to watching the skies for novel stars. Luckily, the orbiting X-ray telescope XMM-Newton just happened to be observing the area, and discovered the nova that everyone else had missed.

The satellite XMM-Newton is creating a survey of X-ray sources in the Universe, and on October 9, 2007 while turning from one target to another, it passed over a bright source of X-rays that was unexpected. The science team checked over their catalog of previously known X-ray sources in the area, but the only object with that location was the faint star USNO-A2.0 0450-03360039.

Andy Read of the University of Leicester and Richard Saxton of ESA’s European Space Astronomy Centre (ESAC), Spain quickly alerted other astronomers of the finding via the internet. Astronomers at the Magellan-Clay telescope at Las Campanas Observatory in Chile used their 6.5 meter telescope to analyze the light coming from the star and found that it had brightened by more than a factor of 600.

Saxton contacted the All-Sky Automated Survey, an automated survey of millions of stars, and found that the star went nova on June 5th, 2007. The nova has been given the shorter name of V598 Puppis, and had anyone been looking closely – even with the naked eye – at the constellation of Puppis on June 5th of 2007, they would have noticed the star brighten.

The image here shows V598 Puppis in the visible spectrum on the left, and in the X-ray on the right.

Novae of this type occur when a white dwarf, which is a smaller and more compact star, consumes material from a companion star, puffing it up. The nuclear processes in the star begin a runaway reaction after a certain amount of material is consumed, and it explodes violently.

What is curious about the case of V598 Puppis is that X-rays are only released from a nova after visible light. The expanding cloud of dust and debris from the initial explosion blocks most of the X-rays from being released. In the case of most other novae and supernovae, the discovery is made by a visible light telescope, then followed up by telescopes in the other spectra.

Source: ESA Press Release

The Mysterious Mars Mounds

The mystery mounds on Mars. Credit: HiRISE/NASA

[/caption]

The High Resolution Imaging Science Experiment (HiRISE) continues to churn up stunning images as NASA’s Mars Reconnaissance Orbiter passes over the Martian surface. However, today’s example probably creates more questions than answers. Close to the Mars equator, south of Elysium Planitia, exists a crater and inside are some strange mounds that have so far eluded formal explanation. There are a few possibilities how these mounds may have formed and there may also be some examples on Earth too…

These features resemble mesas being stripped by Martian winds, or a build-up of sand/sediment dropped after a sand storm. Actually, these “mystery” features are not formed by sand and may not have been carved out by the wind. This image was commissioned by the HiRISE team to investigate a previous Mars Orbital Camera (MOC, on the Mars Global Surveyor) image of the region showed an ancient filled-in crater with some strange undulations in the bottom. Using the full 25 cm/pixel resolving power of HiRISE, these features can be seen in great detail.

NASA/JPL/University of Arizona
The full HiRISE image of the region. Credit: NASA/JPL/University of Arizona

The largest mounds appear to be around 200 meters wide and vary in shape. Between the mounds appear to be wind-blown sand features, but scientists cannot explain the formation of the mounds at present. Attention is being paid to the rough surface texture of the mounds which suggests they may be outcrops of tough bedrock where loose sand or sedimentary rock has been eroded away, leaving the mounds behind. But how did this erosion occur and why is the bedrock so hardy?

The mounds could be ancient lava flows, fluvial sediment (indicating a plentiful supply of water in the past) or impact ejecta (i.e. hot material kicked into the old crater after another impact). Any one of these factors may have produced these hardened features. The strange thing is that there is a huge plain of these mounds, they aren’t isolated features. To be able to determine the origin of these mounds, further analysis needs to be carried out. The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter will now be used to derive the mineral content of the region so a better understanding can be attained. But until then, these mounds will remain a true Martian mystery…

Source: HiRISE