The Human Brain in Space: Euphoria and the “Overview Effect” Experienced by Astronauts

The integration of spirituality and science have been taught by scholars of many faiths for years (mi2g.com)

Could be the best example yet of being “spaced out”? When in space, astronauts have repeatedly reported inexplicable euphoria, a “cosmic connection” or an increased sensitivity to their place in the Universe. The experience sounds like the ultimate high, or the ultimate enlightening; it would appear that without trying, astronauts are able to attain a similar mental state as meditating Buddhist monks. So what is happening when the human body is in space? Does zero-gravity create new connections in the brain? Or is it a natural human response to the vastness of space and realizing just how small we are in comparison? What ever the reason, it looks like even when astronauts are back on solid ground, they have changed profoundly…

On March 6th, 1969, Rusty Schweikart experienced a feeling that the whole universe was profoundly connected. At the time, he was on a postponed space walk outside his Apollo 9 Lunar Module, carrying out tests for the forthcoming Moon landings. Already having suffered from space sickness (hence delaying the EVA) he felt a euphoric sensation:

“When you go around the Earth in an hour and a half, you begin to recognize that your identity is with that whole thing. That makes a change… it comes through to you so powerfully that you’re the sensing element for Man.” – Russell “Rusty” Schweikart.

Two years later, Apollo 14 astronaut, Edgar Mitchell (joint record holder with Alan Shepard for longest ever Moon walk of 9 hours and 17 minutes) reported experiencing an “Overview Effect”. He described the sensation gave him a profound sense of connectedness, with a feeling of bliss and timelessness. He was overwhelmed by the experience. He became profoundly aware that each and every atom in the Universe was connected in some way, and on seeing Earth from space he had an understanding that all the humans, animals and systems were a part of the same thing, a synergistic whole. It was an interconnected euphoria.

Schweikart and Mitchell’s experiences are not isolated anomalies, many other astronauts since the 1970’s have reported this Overview Effect. Andy Newberg, a neuroscientist/physician with experience in space medicine, hopes to find out whether this is an actual psychological phenomenon. Perhaps there is a medical reason for an actual change in an astronaut’s brain function when in space. What’s more, he’s noticed a psychological change in the men and women that have come back from space:

You can often tell when you’re with someone who has flown in space, its palpable.” – Andy Newberg

Newberg has scanned many brains to try to understand how humans reach this euphoric state on Earth. The religious communities, transcendental mediators and others around the world are able to experience similar states and have been the focus of interest to neuroscientists. In some cases, the meditation leads some people to view the whole cosmos as an interconnected quantum web, where consciousness is not separate, but a part of the Universe. Now Newberg hopes to monitor the brain of one of the first space tourists so a better grasp of the brain function of a human in zero-G can be understood.

Edgar Mitchell has said that his personal event has changed his life, revealing a Universe that had remained hidden until he experienced the Overview Effect on that Apollo 14 mission in 1971. Whether this effect is a physical change in the brain, or a deeper, yet to be discovered event, Newberg hopes to find some answers.

Source: The Daily Galaxy

Spirit Unearths Former Yellowstone on Mars

Spirit’s gimpy right front wheel has turned out to be a blessing in disguise. The Mars Exploration Rover traversing around the Gusev Crater region on Mars has been forced to drive in reverse, dragging the jammed wheel behind. But that wheel gouged a trench a few inches deep through the Martian soil, revealing deposits of nearly pure silica that scientists believe formed when volcanic steam or hot water (or maybe both) percolated through the ground. Such deposits are found around hydrothermal vents like those in Yellowstone National Park, and when active, usually teem with life.

The silica, discovered in 2007 and announced briefly then by NASA, has now been further examined by the rover’s Miniature Thermal Emission Spectrometer and the Alpha Particle X-Ray Spectrometer. A new paper in the journal Science describes the findings, lead by Steven Squyres, principal investigator for the rover science payload.

The silica finding turns a spotlight on an important site that may contain preserved traces of ancient Martian life. But since the rovers don’t carry instruments that can detect microscopic life, for now the site can only be classified as a once habitable environment where liquid water and the energy needed for life were present. This area would be a prime location for a future mission capable of searching for ancient biological evidence.

Although the trench was created and briefly studied last year, further examination of the site and the surrounding area had to wait while Spirit entered a hibernation mode for a few months in an attempt to survive its second Martian winter. The rover spent those months on the edge of a football-field-size feature called Home Plate.

Now that Spirit has been moving around again, the rover has found the silica in a wide area.
“It’s not just the soil in a trench in one place,” said Steve Ruff, a co-author of the paper. “It’s a broader story of outcrops that extend 50 meters [about 150 feet] away from Home Plate. It’s not a small scale, modest phenomenon.”

In some areas the soil is nearly 90% silica.

Making such pure silica requires a lot of water, says Ruff. “On Earth, the only way to have this kind of silica enrichment is by hot water reacting with rocks.” In other words, a Yellowstone-like environment that would include a combination of geothermal heat and water produced by a hydrothermal system like the one which powers the hot springs, geysers, mudpots, and fumaroles (steam vents) of Yellowstone National Park.

Astrobiologist Jack Farmer explains that hydrothermal systems generally precipitate silica and other minerals as heated groundwater rises, cools, and gives off dissolved gases. “If there were organisms living there,” he says, “our terrestrial experience shows that microbes can easily be entrapped and preserved in the deposits.” Silica, he notes, is an excellent medium for capturing and preserving traces of microbial life.

NASA landed the two Mars rovers, Spirit and Opportunity, on opposite sides of the planet in January 2004 to look for rocks showing the presence of water. As of now, the rovers are more than four Earth years into a mission designed to last just three months. Despite dust collecting on their solar panels and mechanical wear-and-tear, both are continuing to explore.

Original News Source: ASU

Hubble Spies Third Red Spot on Jupiter

Jupiter appears to be breaking out with spots, as a third red storm has joined the Great Red Spot and Red Spot Jr. (or Oval BA) in the planet’s turbulent atmosphere. This third spot used to be a white storm, and its change to a red color might mean the storm is becoming more powerful. Astronomers believe these new images captured by both the Hubble and the Keck telescope may show that Jupiter is undergoing a major climate change, as was predicted four years ago.

“One of the most notable changes we observe in both the Hubble and Keck images is the change from a rather bland, quiescent band surrounding the Great Red Spot just over a year ago to one that is incredibly turbulent at both sides of the spot,” said Imke de Pater from the University of California Berkley. “During all previous HST observations and spacecraft encounters, starting with Voyager in 1979, such turbulence was seen only on the west or left side of the spot.”

The Great Red Spot has been around as long as 200 to 350 years, based on early telescopic observations. If the new red spot and the Great Red Spot continue on their courses, they will encounter each other in August. Astronomers will keep a close watch on whether the small oval will either be absorbed or repelled from the Great Red Spot. Red Spot Jr. which lies between the two other spots, and is at a lower latitude, will pass the Great Red Spot in June.

The Great Red Spot is a persistent, high-pressure storm whose cloud head sticks some 8 kilometers (5 miles) above the surrounding cloud deck. The new spot is much smaller than the other two and lies to the west of the Great Red Spot in the same latitude band of clouds.

The visible-light images were taken by Hubble’s Wide Field Planetary Camera 2 on May 9 and 10, and near-infrared adaptive optics images were taken by the W.M. Keck telescope on May 11.

These images may support the idea that Jupiter is in the midst of global climate change, as first proposed in 2004 by Phil Marcus, a professor of mechanical engineering at the University of California, Berkeley. The planet’s temperatures may be changing by 15 to 20 degrees Fahrenheit. The giant planet is getting warmer near the equator and cooler near the South Pole. He predicted that large changes would start in the southern hemisphere around 2006, causing the jet streams to become unstable and spawn new vortices.

“The appearance of the planet’s cloud system from just north of the equator down to 34 degrees south latitude keeps surprising us with changes and, in particular, with new cloud features tha haven’t been previously observed,” said Marcus. “Whether or not Jupiter’s climate has changed due to a predicted warming, the cloud activity over the last two and a half years shows dramatically that something unusual has happened.”

Original News Source: Hubble Press Release

Exoplanet Count Rises With New Discoveries

With several space- and ground-based telescopes, as well as dedicated space missions searching for exoplanets, or planets orbiting other stars, the count of new discoveries keeps rising. The current total now stands at 287 planets. The newest spacecraft dedicated to this search, the COROT Mission (Convection, Rotation and planetary Transits), announced the finding of two new exoplanets as well as an unknown celestial object. This discovery may be a “missing link” between stars and planets astronomers have been searching for.

The two new planets are gas giants of the hot Jupiter type, which orbit very close to their parent star and tend to have extensive atmospheres because heat from the nearby star gives them energy to expand. Most of the exoplanets found so far are the gas giant variety because of the limits of current technology.

In addition, an oddity dubbed “COROT-exo-3b” has raised particular interest among astronomers. It appears to be something between a brown dwarf, a sub-stellar object without nuclear fusion at its core but with some stellar characteristics, and a planet. Its radius is too small for it to be a super-planet.

If it is a star, it would be among the smallest ever detected. Follow-up observations from the ground have determined it to be at 20 Jupiter massses. This makes it twice as dense as the metal Platinum.

COROT has also detected extremely faint signals that, if confirmed, could indicate the existence of another exoplanet, as small as 1.7 times Earth’s radius.

This is an encouraging sign in the delicate and difficult search for small, rocky exoplanets that COROT has been designed for.

COROT launched in December 2006, with operations beginning in February of 2007. So far the mission has found four exoplanets. The mission started observations of its sixth star field at the beginning of May this year. During this observation phase, which will last 5 months, the spacecraft will simultaneously observe 12,000 stars.

More about COROT.

Original News Source: ESA

Over 100 Explosions Observed on the Moon

In the past two and a half years, the Moon has taken a real beating. NASA astronomers have observed over a hundred explosions on the Moon during this time, caused by meteoroids both large and small, slamming into the Moon at speeds of up to 160,000 miles per hour (257,495 kilometers per hour).

The Moon gets pelted constantly – over a metric ton of material falls on the Moon every day! Most impacts are too dim to see with the naked eye because they are small micrometeorites. The rate of the flashes from larger impacts increases dramatically – up to an impact every hour – during meteor showers such as the Perseids and Quadrantids. The sporadic impacts account for twice as many observable events as compared to meteor shower impacts.

If you were standing on the Moon, you wouldn’t see these impacts as “shooting stars,” though, since there is no atmosphere in which they can burn up. The explosion is also not something like one would see here on Earth, as the absence of oxygen doesn’t allow for any combustion. The kinetic energy of the impact heats up the rocks on the surface to the point where they become molten, and glow for a short period after the impact.

Pictured left is the flash from a confirmed impact on March 13th, 2008, as captured by amateur astronomer George Varros. The small white point in the bottom right of the picture is where the impact occurred. He has an animation of the event on his site.

Monitoring the number of impacts on the Moon is important for future missions to visit our smaller neighbor, as well as for the eventual establishment of a Moon base. It will be important to know when astronauts should take cover from potential strikes during peak periods of impacts. After all, even a small meteoroid traveling between 4500 mph (7,242 kph) and 160,000 mph (257, 495) could do a lot of damage to a space suit or lunar base. A typical blast that can be seen with a backyard telescope from Earth is equivalent to a few hundred pounds of TNT. I know I wouldn’t want to go for a Moon walk during a meteor shower…

NASA has been observing lunar impacts with one 14-inch (36 cm) telescope and one 20-inch (51 cm) located at the Marshall Space Flight Center in Alabama, and one 14-inch telescope located in Georgia.

But it’s not just NASA that can see these lunar fireworks: NASA’s Meteoroid Environment Office has called for amateur astronomers to help in recording and confirming these flashes. If you have a lot of patience, a telescope and a way to record the flashes, check out their site to get started.

Source: Physorg, NASA

Solar Sonic Boom: Eclipses May Generate Atmospheric Shocks

The shadow of a lunar eclipse (NASA)

Something strange happens during a solar eclipse. As the Moon’s shadow passes over the surface of the Earth, observers have noticed mysterious bands of shadow ripple ahead and behind the eclipse. It seemed possible that these bands were a result of constructive and destructive interference of sunlight around the limb of the Moon (an effect known as diffraction), or atmospheric turbulence may have had a part to play. However, a new theory has come to light. As the Moon’s shadow travels across the Earth’s surface, it may be possible that the shadow cools the atmosphere suddenly, creating a pressure difference. This gives rise to a sonic phenomenon: a shock front. This may refract the path of light from the lunar limb and through the atmosphere, creating the bands of light and dark. The solar eclipse may be a sonic phenomenon as well as an optical one…

If an object travels faster than the speed of sound, a shock will form. This shock is generated as a body passes through the atmosphere faster than sound can propagate. On Earth, at sea level, the speed of sound is approximately 1,225 kilometres per hour (or 761 miles per hour; i.e. the sound of an explosion would take an hour to travel a distance of 761 miles). Should an aircraft travel at 1,225 km/hr or beyond, the pressure waves it generates cannot keep up with the plane. In this case, a shock wave will form, more commonly known as a “sonic boom” for stationary observers.

So, back to the solar eclipse. How can the shadow of the Moon create a sonic boom? It’s only a shadow, it’s not a solid body moving inside the atmosphere; surely a shock isn’t possible? Actually, research carried out by astrophysicist Dr Stuart Eves who works with the Surrey Satellite Technology Limited (SSTL) suggests it may be possible, and the phenomenon produced is known as “infrasound”. He believes that as the lunar shadow passes over the Earth’s surface, there is intense, local cooling of the atmosphere after the leading and before trailing edge of the eclipse. This cooling sets up a sudden pressure difference.

As the eclipse shadow moves through the atmosphere, the sudden disappearance of the Sun changes the Earth’s temperature.” – Dr Eves.

If we consider that the eclipse shadow travels at supersonic velocities (1,100 miles per hour at the equator and up to 5,000 miles per hour near the poles), and the strong pressure gradient travels with the eclipse, a shock front is created in the atmosphere, generating infrasound waves. The sub-audible infrasound generated by this occurrence modifies the atmosphere to such an extent that it will deflect the path of light through the atmosphere. In this case, the light and dark bands around the eclipse shadow would be created by refraction.

Some scientists are sceptical about this new theory, but Eves thinks his explanation may also help to explain other phenomena during eclipses. Infrasound may be responsible for strange Foucault pendulum behaviour (the sensitive pendulums – used to demonstrate the rotation of the Earth – swing wildly during eclipses). The infrasound pulses may cause the ground to vibrate, interfering with the pendulum swing. Infrasound may also explain some bizarre animal behaviour during these events. Sub audible sound wave frequencies are known to distress or alarm birds, perhaps their strange behaviour during eclipses could be down to infrasound propagation.

Source: BBC

Avoiding the Technicolor Yawn In Space

Astronauts don’t talk much about it, but about half of those who fly in space experience Space Adaptation Syndrome (SAS), or space sickness, which includes nausea, vertigo, visual illusions and headaches. Even though SAS isn’t life threatening, the onset of these symptoms at a crucial point in the mission could have potentially detrimental affects. The last thing any space flight needs is a violently ill commander or pilot during important maneuvers like docking to the space station, or a spacewalker doing the Technicolor Yawn in his helmet. Researchers have determined that SAS is not caused so much by the weightlessness experienced in space, but more by the body adapting to a different gravitational force. A Dutch PhD student studying SAS believes she may have developed a ground-based method for identifying people who are subject to space sickness, following her research in which she whirled test subjects around in a centrifuge.

Until now, no one could determine which astronauts would experience SAS. It can strike seasoned fighter-pilots-turned-astronauts who would claim to be immune from motion sickness, and additionally frequent flyer astronauts can experience SAS on one mission, but not another, while some rookie astronauts are symptom-free.

But Suzanne Nooij says her research shows that an astronaut who will suffer space sickness in microgravity conditions will also suffer it after being vigorously centrifuged at 3G for an hour or so. Spinning at that force is somewhat easily endured for that amount of time, but Nooij says, if you’re susceptible to SAS, once you get out of the centrifuge you’ll puke.

Nooij focused her research on the organ of balance, the area in the inner ear made of semi-circular canals, which are sensitive to rotation, and “otoliths,” saccules inside the ear which are sensitive to linear acceleration. Previous research suggests that a difference between the functioning of the left and right otolith contributes to susceptibility to sickness among astronauts. If this is the case, this should also apply after lengthy rotation.

Nooij tested this otolith asymmetry hypothesis. The otolith and semi-circular canals functions on both sides were measured of fifteen test subjects known to be susceptible to space sickness. Those who suffered from space sickness following rotation proved to have high otolith asymmetry and more sensitive otolith and canal systems. These people could not be classified as sensitive or non-sensitive on the basis of this asymmetry alone, but could on the basis of a combination of various otolith and canal features. This demonstrates that the entire organ of balance is involved in space sickness and that it probably entails complex interactions between the various parts of the organ of balance.

While researchers have yet to find a cure for this, previous knowledge of a space flyer’s susceptibility to SAS would allow for preventative measures such as taking motion sickness medicine, limiting food intake, and avoiding quick head movements.

While Nooij is not an astronaut, her PhD supervisor at TU Delft, is Wubbo Ockels, the first Dutchman in space in 1986, who suffered from SAS.

Original News Sources: Physorg, The Register

More Satellite Images of China’s Earthquake

Beichuan Region of China, before and after Earthquake. Image credit: Formosat 2

More satellite images have been released portraying the devastation caused by the May 12, 2008 earthquake that struck China’s Sichaun Basin. This pair of images, captured by Taiwan’s Formosat-2, illustrates the challenges faced by rescuers bringing equipment and supplies to survivors of the massive 7.9-magnitude earthquake. The top “before” image from 2006 shows the tree-covered mountain terrain of China’s Beichuan County. A river curves along the base of the mountain, and a road follows the banks of the river.

In the lower image, taken on May 14, 2008, the landscape is almost unrecognizable. A landslide engulfed the entire mountainside, turning its green slopes brown. Both the road and the river are entirely gone, buried under the rubble, which rises in a mound up the opposite slope. Landslides, flooding and buckled roads have made travel within quake-affected regions difficult.


Landslides have created earthen dams, and new lakes were formed overnight. This pair of high-resolution images from Taiwan’s Formosat-2 satellite show a “before” and “after” comparison from May 14, 2006 (top),and May 14, 2008 (bottom.) Several landslides, a collapsed bridge, and a bridge submerged by a newly formed lake are visible in the “after” the earthquake image.


Finally, this bottom series of images show how devastation continues to occur as the earthquake and its aftershocks has sent earth and rock tumbling down mountains into rivers, creating natural dams behind which lakes quickly built up. The first, a “before” image taken in 2006, show normal springtime conditions.

On May 15, 2008, three days after the initial earthquake, both the bridge and the roads it connected had disappeared under murky water. Some sections of the villages remained above the waterline, as did portions of the roads leading to the villages. The tops of trees, perhaps on slightly higher ground, formed tiny islands near the shores of the growing lake.

Formosat-2 took the final image on May 19, 2008. By this time, water levels in the earthquake lake had risen enough to immerse both villages and the entire road network. Tan debris floats on the surface of the water, concentrated over the locations of the villages.

Earthquake-created dams present a dual danger. Apart from the upstream floods that occur as a lake builds behind the natural dam, the piles of rubble that form the dam may be unstable. Another quake or simply the pressure of water behind it could burst the dam, sending a wall of water downstream. Downstream floods may also occur when water begins to cascade over the top of the dam. Thousands of people were evacuated from Beichuan on May 17 when one such lake threatened to burst, said China Daily.

Original News Source: NASA’s Earth Observatory

The Difference Between Reflectors and Refractors

When you choose a telescope, there are two main kinds you can pick from, reflectors and refractors. Both can be wonderful for viewing the night sky. They use basically different methods to boost light from dim objects in the sky. Here’s how they work, and how they’re different.

Refractor Telescopes
Here’s what’s inside a basic refractor telescope. The job of the objective lens, opposite the eyepiece end, is to gather the light coming from a distant object, such as a star, and bend it into a single point of focus. A second lens’ (the eyepiece) job is to enlarge that focused image for our retina; it acts as a magnifying glass. Think of the focused light coming in from the first lens as a bug, and think of the eyepiece magnifier as a basic magnifying glass that we look at the bug with. That’s it in a nutshell.


Reflector Telescopes
A reflector telescope uses two mirrors instead of two lenses. Isaac Newton developed this telescope to combat chromatic aberration (a rainbow seen around some objects viewed with a refractor telescope). A mirror used to gather light doesn’t suffer from this effect. Light from an object enters the telescope tube and is reflected off a curved mirror at the end of the tube. A second, small, flat mirror in the middle of the tube reflects this image to the eyepiece. There are potential problems associated with the mirrors. Firstly, some light is always lost in the reflection; good quality telescopes can usually gather 90% of the light coming in. Secondly, the mirror might not be a perfect curve, so the image being reflected will not come to a perfect point. This results in a dragging effect; a point could be seen as a line or cross. Also, the mirrors need to be cleaned and realigned from time to time.

Congress Considering Additional Shuttle Flight and More Science Funding

A bill directing NASA to fly an additional space shuttle mission to deliver the $1 billion Alpha Magnetic Spectrometer to the International Space Station cleared the House Science and Technology space and aeronautics subcommittee. The NASA Authorization Act of 2008 (H.R. 6063) was quickly approved sent on to the full committee for consideration. The bill also authorizes a $19.2 billion budget for NASA for 2009, or about $1.6 billion more than the White House is requesting. Additionally, it would authorize an additional $1 billion in 2009 to accelerate development of the Orion Crew Exploration Vehicle and Ares I launcher. Rep. Mark Udall (D-Colo.), the subcommittee’s chairman, introduced the legislation five days ago, stating concerns about the five-year gap between when the shuttle is retired to when the Orion vehicle will be ready to transport crew and supplies to the ISS.

The legislation would still put NASA on pace to return to the Moon around 2020. But it also would provide more funds for climate monitoring satellites, such as a new Landsat satellite, and Glory, which would gather data on aerosols and black carbon in Earth’s atmosphere. The additional shuttle flight to bring the spectrometer science payload to the ISS would ease concerns of the international partners and reverse a controversial cut to the ISS’s science capabilities.

If you are a US citizen and agree with these appropriations, consider contacting your congressmen to encourage their support of this bill.

Text of full bill.

Original News Source: Yahoo News