Incredible SRB Video

Take a look at this amazing video shot from the cameras located on the solid rocket boosters on space shuttle Endeavour’s recent launch. The fact it was a night launch really highlights all the flames and sparking. Most interesting, however, is that during the first two and a half minutes of acsent while the SRB’s are attached, the leading edges of the shuttle’s wings are fully visible. I know hindsight is 20/20, but if these cameras had only been in place for Columbia’s last launch….

But we’re learning from experience. These cameras not only give engineers good information and views of the shuttle’s thermal protection system, but they provide some spectacular footage for us all to enjoy.

Video Source: Reel NASA

Ancient Asteroids Discovered

calcium_aluminum_inclusion.thumbnail.jpg

Way back in the beginning of the solar system, about 4.5 billion years ago, the first materials began to condense from gasses into solid particles. These materials were rich in calcium and aluminum. Astronomers have thought that at least some of the solar system’s oldest asteroids should have plenty of these two elements, but no asteroids had ever been found that were particularly rich in them. Until now. A team of scientists recently identified three previously unknown asteroids that appear to be among the oldest objects in our solar system.

Using visible and infrared data from telescopes on Mauna Kea in Hawaii, astronomers from the University of Maryland found asteroids that appear to relatively unchanged since they formed in the early stages of our solar system’s development. “We have identified asteroids that are not represented in our meteorite collection and which date from the earliest periods of the Solar System,” said research astronomer Jessica Sunshine. “These asteroids are prime candidates for future space missions that could collect and return samples to Earth, providing a more detailed understanding of the Solar System’s first few millions of years.”

Meteorites found on Earth do contain small amounts of calcium and aluminum. Called calcium aluminum inclusions (CAIs) these white, millimeter-sized objects are found in meteorites, often together with chondrules, which are small balls of iron or magnesium.

In 2002, an international team of scientists accurately dated CAIs at 4.57 billion years, making them the oldest known objects in the solar system. When the famous Allende meteorite was found in 1969, scientists first recognized these inclusions matched many properties expected to be found in the early solar system.

Sunshine’s team used the SpeX instrument at the NASA Infrared Telescope facility to look at the surface of asteroids, looking for “fingerprints” indicative of CAIs. Sunshine said that several asteroids have been found that contain 2-3 times more CAI materials than any known meteorite. “It appears ancient asteroids have indeed survived, and we know where they are,” she said.

Original news source: Eureka Alert

Biggest Ever Cosmic Explosion Observed 7.5 Billion Light Years Away

gamma.thumbnail.jpg

A record-breaking gamma ray burst was observed yesterday (March 19th) by NASA’s Swift satellite. After red-shift observations were analysed, astronomers realized they were looking at an explosion half-way across the Universe, some 7.5 billion light years away. This means that the burst occurred 7.5 billion years ago, when the Universe was only half the age it is now. This shatters the record for the most distant object that can be seen with the naked eye…

Gamma ray bursts (GRBs) are the most powerful explosions observed in the Universe, and the most powerful explosions to occur since the Big Bang. A GRB is generated during the collapse of a massive star into a black hole or neutron star. The physics behind a GRB is highly complex, but the most accepted model is that as a massive star collapses to form a black hole, the in falling material is energetically converted into a blast of high energy radiation. It is thought the burst is highly collimated from the poles of the collapsing star. Any local matter downstream of the burst will be vaporized. This has led to the thought that historic terrestrial extinctions over the last hundreds of millions of years could be down to the Earth being irradiated by gamma radiation from such a blast within the Milky Way. But for now, all GRBs are observed outside our galaxy, out of harms way.

An artists impression of gamma ray burst (credit: Stanford.edu)

This record-breaking GRB was observed by the Swift observatory (launched into Earth orbit in 2004) which surveys the sky for GRBs. Using its Burst Alert Telescope (BAT), the initiation of an event can be relayed to Earth within 20 seconds. Once located, the spacecraft turns all its instruments toward the burst to measure the spectrum of light emitted from the afterglow. This observatory is being used to understand how GRBs are initiated and how the hot gas and dust surrounding the event evolves.

“This burst was a whopper; it blows away every gamma ray burst we’ve seen so far.” – Neil Gehrels, Swift principal investigator, NASA Goddard Space Flight Center, Greenbelt, Md.

This particular GRB was observed in the constellation of Boötes at 2:12 a.m. (EDT), March 19th. Telescopes on the ground and in space quickly turned to Boötes to analyse the afterglow of the burst. Later in the day, the Very Large Telescope in Chile and the Hobby-Eberly Telescope in Texas measured the burst’s redshift at 0.94. From this measure, scientists were able to pinpoint our distance from the explosion. This red shift corresponds to a distance of 7.5 billion light years, signifying that this huge GRB happened 7.5 billion years ago, over half the distance across the observable universe.

Source: NASA

Could Cosmic Rays Influence Global Warming?

sunset.thumbnail.jpg

The idea goes like this: Cosmic rays, originating from outside the Solar System, hit the Earth’s atmosphere. In doing so these highly energetic particles create microscopic aerosols. Aerosols collect in the atmosphere and act as nuclei for water droplet formation. Large-scale cloud cover can result from this microscopic interaction. Cloud cover reflects light from the Sun, therefore cooling the Earth. This “global dimming” effect could hold some answers to the global warming debate as it influences the amount of radiation entering the atmosphere. Therefore the flux of cosmic rays is highly dependent on the Sun’s magnetic field that varies over the 11-year solar cycle.

If this theory is so, some questions come to mind: Is the Sun’s changing magnetic field responsible for the amount of global cloud cover? To what degree does this influence global temperatures? Where does that leave man-made global warming? Two research groups have published their work and, perhaps unsurprisingly, have two different opinions…


I always brace myself when I mention “global warming”. I have never come across such an emotive and controversial subject. I get comments from people that support the idea that the human race and our insatiable desire for energy is the root cause of the global increases in temperature. I get anger (big, scary anger!) from people who wholeheartedly believe that we are being conned into thinking the “global warming swindle” is a money-making scheme. You just have to look at the discussions that ensued in the following climate-related stories:

But what ever our opinion, huge quantities of research spending is going into understanding all the factors involved in this worrying upward trend in average temperature.

Cue cosmic rays.

Researchers from the National Polytechnic University in the Ukraine take the view that mankind has little or no effect on global warming and that it is purely down to the flux of cosmic radiation (creating clouds). Basically, Vitaliy Rusov and colleagues run the analysis of the situation and deduce that the carbon dioxide content of the atmosphere has very little effect on global warming. Their observations suggest that global temperature increases are periodic when looking into the history of global and solar magnetic field fluctuations and the main culprit could be cosmic ray interactions with the atmosphere. Looking back over 750,000 years of palaeotemperature data (historic records of climatic temperature stored in ice cores sampled in the Northern Atlantic ice sheets), Rusov’s theory and data analysis draw the same conclusion, that global warming is periodic and intrinsically linked with the solar cycle and Earth’s magnetic field.

But how does the Sun affect the cosmic ray flux? As the Sun approaches “solar maximum” its magnetic field is at its most stressed and active state. Flares and coronal mass ejections become commonplace, as do sunspots. Sunspots are a magnetic manifestation, showing areas on the solar surface where the powerful magnetic field is up welling and interacting. It is during this period of the 11-year solar cycle that the reach of the solar magnetic field is most powerful. So powerful that galactic cosmic rays (high energy particles from supernovae etc.) will be swept from their paths by the magnetic field lines en-route to the Earth in the solar wind.

It is on this premise that the Ukrainian research is based. Cosmic ray flux incident on the Earth’s atmosphere is anti-correlated with sunspot number – less sunspots equals an increase in cosmic ray flux. And what happens when there is an increase in cosmic ray flux? There is an increase in global cloud cover. This is the Earth’s global natural heat shield. At solar minimum (when sunspots are rare) we can expect the albedo (reflectivity) of the Earth to increase, thus reducing the effect of global warming.

This is a nice bit of research, with a very elegant mechanism that could physically control the amount of solar radiation heating the atmosphere. However, there is a lot of evidence out there that suggests carbon dioxide emissions are to blame for the current upward trend of average temperature.

Prof. Terry Sloan and Prof. Sir Arnold Wolfendale from the University of Lancaster and University of Durham, UK step into the debate with the publication “Testing the proposed causal link between cosmic rays and cloud cover“. Using data from the International Satellite Cloud Climatology Project (ISCCP), the UK-based researchers set out to investigate the idea that the solar cycle has any effect on the amount of global cloud cover. They find that cloud cover varies depending on latitude, demonstrating that in some locations cloud cover/cosmic ray flux correlates in others it does not. The big conclusion from this comprehensive study states that if cosmic rays in some way influence cloud cover, at maximum the mechanism can only account for 23 percent of cloud cover change. There is no evidence to suggest that changes in the cosmic ray flux have any effect on global temperature changes.

The cosmic-ray, cloud-forming mechanism itself is even in doubt. So far, there has been little observational evidence of this phenomenon. Even looking at historical data, there has never been an accelerated increase in global temperature rise than the one we are currently observing.

So could we be clutching at straws here? Are we trying to find answers to the global warming problem when the answer is already right in front of us? Even if global warming can be amplified by natural global processes, mankind sure ain’t helping. There is a known link between carbon dioxide emission and global temperature rise whether we like it or not.

Perhaps taking action on carbon emissions is a step in the right direction while further research is carried out on some of the natural processes that can influence climate change, as for now, cosmic rays do not seem to have a significant part to play.

Original source: arXiv blog

Salt Deposits on Mars Might Be the Right Place to Search for Life

marsdeposits.thumbnail.jpg

Researchers announced today that they have discovered large salt deposits on the surface of Mars. These deposits point to places where large quantities of water existed on the surface of the Red Planet, perhaps for millions of years. And this might be some of the best places to go looking for evidence of life, past and present.

A team led by Mikki Osterloo at the University of Hawaii, Honolulu have turned up approximately 200 separate spots on southern Mars that seem to have ancient deposits of sodium chloride. In other words, they’ve found table salt sitting on the surface of Mars.

The sites, discovered by NASA’s Mars Odyssey spacecraft, range in size from 1 square km (.6 square miles) to 25 square kms.

So how did this salt get there? One possibility is that it came from groundwater, reaching the surface in low spots. The water would evaporate and leave the mineral deposits over the course of millions of years. Since the sites are largely disconnected from one another, it rules out the possibility the salt was left by an ocean that evaporated billions of years ago.

“Many of the deposits lie in basins with channels leading into them,” said Philip Christensen, co-author and principal investigator for the camera at Arizona State University. “This is the kind of feature, like salt-pan deposits on Earth, that’s consistent with water flowing in over a long time.”

Don’t go looking for life today, though. The scientists think the salt deposits were formed approximately 3.5 to 3.9 billion years ago. This was a time when Mars had much warmer and wetter conditions than the frigid, dry climate on the planet today.

Until now, researchers have been looking for other evidence of past water on the surface of Mars, like clay or sulfate minerals. Clay is evidence that a region was weathered by water, and sulfates are caused by water evaporation. These salts offer an alternative place to look for evidence of past life.

To get salt deposits of this size, you would need to have large quantities of water sitting on the surface of Mars for a long time. And this is crucial in the search for life. You want a habitat that endures for a long time.

Original Source: NASA/JPL News Release

Carnival of Space #46

enceladus_flyby_color_spin0.thumbnail.jpg

This week, the Carnival of Space is Riding with Robots on the High Frontier. Witness the discoveries coming from the Lunar and Planetary Science Conference, gasp in amazement at Cassini’s recent Enceladus flyby, and try to wrap your brain around the search for extrasolar planets… in STEREO.

Click here to read the Carnival of Space #46

And if you’re interested in looking back, here’s an archive to all the past carnivals of space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, let me know if you can be a host, and I’ll schedule you into the calendar.

Finally, if you run a space-related blog, please post a link to the Carnival of Space. Help us get the word out.

Underground Oceans Discovered on Titan

With each flyby, NASA’s Cassini spacecraft has been building up the case that there are lakes and seas of liquid hydrocarbons on the surface of Saturn’s moon Titan. But now we get the stunning news that the planet might have vast oceans of water and ammonia underneath its surface as well.

Over the course of 19 separate Cassini Titan flybys, members on the mission science team carefully established the position of 50 unique landmarks on the surface of the moon. After each flyby, they located the landmarks again, and marked their positions.

During nearly 2 years of flybys, from October 2005 to May 2007, surface features had moved from their original positions by up to 30 km (19 miles). The only way the surface could be shifting like this is if the moon’s icy crust is floating atop an internal ocean.

“We believe that about 62 miles beneath the ice and organic-rich surface is an internal ocean of liquid water mixed with ammonia,” said Bryan Stiles of NASA’s Jet Propulsion Laboratory (JPL) in, Pasadena, Calif.

Since Titan has an incredibly thick atmosphere, 1.5 times more dense than the Earth, it’s possible that powerful winds are rocking the moon back and forth around its axis. It might be speeding the rotation up at one point in the year, and then slowing it back down again. But this would only be possible if there’s an ocean underneath the surface that the entire crust floats on top of.

“The combination of an organic-rich environment and liquid water is very appealing to astrobiologists,” said Ralph Lorenz, lead author of the paper and Cassini radar scientist at the Johns Hopkins Applied Physics Laboratory in Laurel, Md. “Further study of Titan’s rotation will let us understand the watery interior better, and because the spin of the crust and the winds in the atmosphere are linked, we might see seasonal variation in the spin in the next few years.”

Researchers will get another chance to test their theories shortly. Cassini is due to make another Titan flyby on March 25th, at an altitude of only 1,000 km (620 miles).

The research will be published in the March 21st issue of the journal Science.

Original Source: NASA News Release

Podcast: Craters

mooncrater.thumbnail.gif

Pamela’s attending the 39th Lunar and Planetary Sciences Conference, and you know what that means: the Moon… and planets! When you think of the Moon, you think of craters. In fact, that’s a big theme this week at the conference, so Pamela took it as inspiration. Here you go, the week we drove the show into a crater. Wait… there’s got to be a better way to describe this.

Click here to download the episode

Craters – Show notes and transcript

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

ATV Jules Verne Reaches “Parking Orbit” 2000km from ISS

atv_iss_approach.thumbnail.jpg

Peering across 2000 km of space, the Automated Transfer Vehicle (ATV), “Jules Verne”, leads the orbit of the International Space Station (ISS). The ISS will now be a speck on the ATV’s horizon, but only hours earlier, it completed a fly-by 30 km underneath, giving the station and space shuttle Endeavour crew a look of the precious cargo shipment. Jules Verne will now sit and wait in “parking orbit” until the coast is clear for the ATV to dock early next month…

In an ultimate fly-by, the Jules Verne shot past the ISS 30 km below its orbit. A few thruster blasts later and the robotic vehicle had reached its parking orbit, 2000 km in front of the ISS. A photo was apparently taken by the ISS’s robotic arm, but the zoom wasn’t powerful enough to get any detail of the craft as it passed.

The ATV must now wait for Endeavour to finish its mission before it can approach the station. Jules Verne has passed all mission requirements so far, but it still has a few “practice runs” to carry out before it will be cleared for docking. On the 29th and 31st of March the vehicle will carry out two mock docking procedures in preparation for the real event on April 3rd.

The ATV successfully completed the Collision Avoidance Manoeuvre on March 16th, so a fail-safe docking procedure is known to be working correctly.

The ATV’s second propulsion chain was used to complete today’s manoeuvres into parking orbit and all propulsion systems seem to be fully operational. Alberto Novelli, ESA’s Mission Director at the ATV Control Centre in Toulouse, France, added:

In doing the boosts we have tested all the pressure regulators and that worked perfectly fine. So as of today we have the proof that the propulsion system as a whole, including all the redundancies, is working fine.” – Novelli.

So the excitement continues to build for Europe’s first fully automated ISS 20 tonne supply vehicle as it patiently awaits its turn to dock with the station.

Source: ESA

Gravity Waves in the Atmosphere can Energize Tornados (Video)

Gravity waves are global events. Much like the ripples on a massive pond, these large-scale waves can propagate from an atmospheric disturbance over thousands of miles. These waves are maintained by the gravitational force of Earth pulling down and the buoyancy of the atmosphere pushing up. Until now it has been hard to link atmospheric gravity waves with other atmospheric phenomena, but new research suggests that gravity waves passing over storms can spin up highly dangerous and damaging tornados… Suddenly gravity waves become very important and may help to forecast where and when tornados may strike…

In a nutshell, meteorologist Tim Coleman of the National Space Science and Technology Center in Huntsville (Alabama) sums up what gravity waves are:

They are similar to waves on the surface of the ocean, but they roll through the air instead of the water. Gravity is what keeps them going. If you push water up and then it plops back down, it creates waves. It’s the same with air.” – Coleman

A large number of things may cause gravity waves (not to be confused with gravitational waves, the ripples in space-time), including intense disturbances caused by storm systems, a sudden change in jet stream location or wind shear. The strong oscillation will then travel for hundreds or even thousands of miles.

Still from a movie of a gravity wave passing over Tama, Iowa in 2006 (credit: Iowa Environmental Mesonet Webcam)

See a gravity wave in action over Iowa…

Far from gravity waves being a mild curiosity, it seems that they have a large part to play with other atmospheric dynamics down here on the ground.

Tim Coleman and colleagues have found that the passage of gravity waves over the top of storms could intensify or even create tornados. It is all down to the angular momentum of the spinning storm. When storms are large, they slowly rotate. If for some reason they shrink in scale, the spin will increase (imagine an ice-skater spinning on the ice with her arms outstretched, as she brings her arms in, she spins faster). This is the fundamental rule of angular momentum conservation, as the size of a storm contracts, the faster it spins. Ultimately, if the conditions are right, intense tornados can be generated, a huge amount of angular momentum in a tiny volume.

Now gravity waves are believed to have a part to play. As they pass over a storm, the pressure of the overlying gravity wave propagation will compress the storm. As this occurs, a vast amount of angular momentum is forced into a smaller volume. The seeding of baby tornados is therefore possible. Gravity waves also come in sets; one wave will follow another, each periodically compressing the storm, intensifying tornado generation.

So keep your eyes peeled for incoming gravity waves during a storm… tornados may spin to life…

Source: NASA