Milky Way’s Black Hole Gave Off a Burst 300 Years Ago

Sagittarius A*. Image credit: Chandra

Our Milky Way’s black hole is quiet – too quiet – some astronomers might say. But according to a team of Japanese astronomers, the supermassive black hole at the heart of our galaxy might be just as active as those in other galaxies, it’s just taking a little break. Their evidence? The echoes from a massive outburst that occurred 300 years ago.

The astronomers found evidence of the outburst using ESA’s XMM-Newton space telescope, as well as NASA and Japanese X-ray satellites. And it helps solve the mystery about why the Milky Way’s black hole is so quiet. Even though it contains 4 million times the mass of our Sun, it emits a fraction of the radiation coming from other galactic black holes.

“We have wondered why the Milky Way’s black hole appears to be a slumbering giant,” says team leader Tatsuya Inui of Kyoto University in Japan. “But now we realize that the black hole was far more active in the past. Perhaps it’s just resting after a major outburst.”

The team gathered their observations from 1994 to 2005. They watched how clouds of gas near the central black hole brightened and dimmed in X-ray light as pulses of radiation swept past. These are echoes, visible long after the black hole has gone quiet again.

One large gas cloud is known as Sagittarius B2, and it’s located 300 light-years away from the central black hole. In other words, radiation reflecting off of Sagittarius B2 must have come from the black hole 300 years previously.

By watching the region for more than 10 years, the astronomers were able to watch an event wash across the cloud. Approximately 300 years ago, the black hole unleashed a flare that made it a million times brighter than it is today.

It’s hard to explain how the black hole could vary in its radiation output so greatly. It’s possible that a supernova in the region plowed gas and dust into the vicinity of the black hole. This led to a temporary feeding frenzy that awoke the black hole and produced the great flare.

Original Source: ESA News Release

Binoculars for Astronomy

Astronomy is best when you get outside and look into the skies with your own eyes. And the best way to get started is with a set of binoculars for astronomy. They’re light, durable, easy to use, and allow you to see objects in the night sky that you just couldn’t see with your own eyes. There are so many kinds of binoculars out there, so we’ve put together this comprehensive guide to help you out.

Everyone should own a pair of binoculars. Whether you’re interested in practicing serious binocular astronomy or just want a casual cosmic close-up, these portable “twin telescopes” are both convenient and affordable. Learning more about how binoculars work and what type of binoculars work best for astronomy applications will make you much happier with your selection. The best thing to do is start by learning some binocular “basics”.

What are binoculars and how do they work?
Binoculars are both technical and simple at the same time. They consist of an objective lens (the large lens at the far end of the binocular), the ocular lens (the eyepiece) and a prism (a light reflecting, triangular sectioned block of glass with polished edges).

The prism folds the light path and allows the body to be far shorter than a telescope. It also flips the image around so it doesn’t look upside-down. The traditional Z-shaped porro prism design is well suited to astronomy and consists of two joined right-angled prisms which reflects the light path 3 times. The sleeker, straight barrelled roof prism models are more compact and far more technical. The light path is longer, folding 4 times and requires stringent manufacturing quality to equal the performance. These models are better suited to terrestrial subjects, and are strongly not recommended for astronomy use.

If you’re using binoculars for astronomy, go with a porro prism design.

Choosing the Lens Size
Every pair of binoculars will have a pair of numbers associated with it: the magnifying power times (X) the objective lens size. For example, a popular ratio is 7X35. For astronomical applications, these two numbers play an important role in determining the exit pupil – the amount of light the human eye can accept (5-7mm depending on age from older to younger). By dividing the objective lens (or aperture) size by the magnifying power you can determine a pair of binoculars exit pupil.

Like a telescope, the larger the aperture, the more light gathering power – increasing proportionately in bulk and weight. Stereoscopic views of the night sky through big binoculars is an incredible, dimensional experience and one quite worthy of a mount and tripod! As you journey through the binocular department, go armed with the knowledge of how to choose your binoculars lens size.

Why does the binocular lens size matter? Because binoculars truly are a twin set of refracting telescopes, the size of the objective (or primary) lens is referred to as the aperture. Just as with a telescope, the aperture is the light gathering source and this plays a key role in the applications binoculars are suited for. Theoretically, more aperture means brighter and better resolved images – yet the size and bulk increases proportionately. To be happiest with your choice, you must ask yourself what you’ll be viewing most often with your new binoculars. Let’s take a look at some general uses for astronomy binoculars by their aperture.

Different Sizes of Binoculars
Binoculars with a lens size of less that 30mm, such as 5X25 or 5X30, are small and very portable. The compact models can fit easily into a pocket or backpack and are very convenient for a quick look at well-lit situations. In this size range, low magnifications are necessary to keep the image bright.

Compact models are also great binoculars for very small children. If you’re interested in choosing binoculars for a child, any of these models are very acceptable – just keep in mind a few considerations. Children are naturally curious, so limiting them to only small binoculars may take away some of the joy of learning. After all, imagine the thrill of watching a raccoon in its natural habitat at sundown… Or following a comet! Choose binoculars for a child by the size they can handle, whether the model will fold correctly to fit their interpupilary size, and durability. Older children are quite capable of using adult-sized models and are naturals with tripod and monopod arrangements. For less than the price of most toys, you can put a set of quality optics into their hands and open the door to learning. Children as young as 3 or 4 years old can handle 5X30 models easily and enjoy wildlife and stargazing both!

Binocular aperture of up to 40mm is a great mid-range size that can be used by almost everyone for multiple applications. In this range, higher magnification becomes a little more practical. For those who enjoy stargazing, this is an entry level aperture that is very acceptable to study the Moon and brighter deep sky objects and they make wonderful binoculars for older children.

Binoculars up to 50-60mm in lens size are also considered mid-range, but far heavier. Again, increasing the objective lens size means brighter images in low light situations – but these models are a bit more bulky. They are very well suited to astronomy, but the larger models may require a support (tripod, monopod, car window mount) for extended viewing. Capable of much higher magnification, these larger binocular models will seriously help to pick up distant, dimmer subjects such as views of distant nebulae, galaxies and star clusters. The 50mm size is fantastic for older children who are ready for more expensive optics, but there are drawbacks.

The 50-60mm binoculars are pushing the maximum amount of weight that can be held comfortably by the user without assistance, but don’t rule them out. Available in a wide range of magnifications, these models are for serious study and will give crisp, bright images. Delicate star clusters, bright galaxies, the Moon and planets are easily distinguishable in this aperture size. These models make for great “leave in the car” telescopes so you always have optics at hand. For teens who are interested in astronomy, binoculars make an incredible “First Telescope”. Considering a model in this size will allow for most types of astronomical viewing and with care will last through a lifetime of use.

Binoculars any larger than 50-60mm are some serious aperture. These are the perfect size allowing for bright images at high magnification. For astronomy applications, binoculars with equations like 15X70 or 20X80 are definitely going to open a whole new vista to your observing nights. The wide field of view allows for a panoramic look at the heavens, including extended comet tails, large open clusters such as Collinder Objects, starry fields around galaxies, nebulae and more… If you have never experienced binocular astronomy, you’ll be thrilled at how easy objects are to locate and the speed and comfort at which you can observe. A whole new experience is waiting for you!

Binocular Magnification
When choosing binoculars for astronomy, just keep in mind that all binoculars are expressed in two equations – the magnifying power X the objective lens size. So far we have only looked at the objective lens size. Like a telescope, the larger the aperture, the more light gathering power – increasing proportionately in bulk and weight. Stereoscopic views of the night sky through big binoculars is an incredible, dimensional experience, but for astronomical applications we need these two numbers to play an important role in determining the exit pupil – the amount of light the human eye can accept. By dividing the objective lens (or aperture) size by the magnifying power you can determine a pair of binoculars exit pupil. Let’s take a look at why that’s important.

How do binoculars magnify? What’s the best magnification to use? What magnifying power do I choose for astronomy? Where do I learn about what magnifying power is best in binoculars? Because binoculars are a set of twin refracting telescopes meant to be used by both eyes simultaneously, we need to understand how our eyes function. All human eyes are unique, so we need to take a few things into consideration when looking at the astronomy binocular magnification equation.

By dividing the objective lens (or aperture) size by the magnifying power you can determine a pair of binoculars exit pupil and match it to your eyes. During the daylight, the human eye has about 2mm of exit pupil – which makes high magnification practical. In low light or stargazing, the exit pupil needs to be more around 5 to be usable.

While it would be tempting to use as much magnification as possible, all binoculars (and the human eye) have practical limits. You must consider eye relief – the amount of distance your eye must be away from the secondary lens to achieve focus. Many high “powered” binoculars do not have enough outward travel for eye glass wearers to come to focus without your glasses. Anything less than 9mm eye relief will make for some very uncomfortable viewing. If you wear eyeglasses to correct astigmatism, you may wish to leave your glasses on while using binoculars, so look for models which carry about 15mm eye relief.

Now, let’s talk about what you see! If you look through binoculars of two widely different magnifying powers at the same object, you’ll see you have the choice of a small, bright, crisp image or a big, blurry, dimmer image – but why? Binoculars can only gather a fixed amount of light determined by their aperture (lens size). When using high magnification, you’re only spreading the same light over a larger area and even the best binoculars can only deliver a certain amount of detail. Being able to steady the view also plays a critical role. At maximum magnification, any movement will be exaggerated in the viewing field. For example, seeing craters on the Moon is a tremendous experience – if only you could hold the view still long enough to identify which one it is! Magnification also decreases the amount of light that reaches the eye. For these reasons, we must consider the next step – choosing the binocular magnification – carefully.

Binoculars with 7X magnifying power or less, such as 7X35, not only delivers long eye relief, but also allows for variable eye relief that is customizable to the user’s own eyes and eyeglasses. Better models have a central focus mechanism with a right eye diopter control to correct for normal right/left eye vision imbalance. This magnification range is great for most astronomy applications. Low power means less “shake” is noticed. Binoculars with 8X or 9X magnification also offer long eye relief, and allows comfort for eyeglass wearers as well as those with uncorrected vision. With just a bit more magnification, they compliment astronomy. Binoculars 10 x 50 magnifying power are a category of their own. They are at the edge of multipurpose eye relief and magnifying power at this level is excellent across all subject matter. However, larger aperture is recommended for locating faint astronomy subjects.

Binoculars with 12-15X magnifying power offer almost telescopic views. In astronomy applications, aperture with high magnification is a must to deliver bright images. Some models are extremely well suited to binocular astronomy with a generous exit pupil and aperture combined. Binoculars with 16X magnification and higher are on the outside edge of high magnification at hand-held capabilities. They are truly designed exclusively as mounted astronomical binoculars. Most have excellent eye relief, but when combined with aperture size, a tripod or monopod is suggested for steady viewing. If you’re interested in varying the power, you might want to consider zoom binoculars. These allow for a variety of applications that aren’t dependent solely on a single feature. Models can range anywhere from as low as 5X magnification up to 30X, but always bear in mind the higher the magnification – the dimmer the image. Large aperture would make for great astronomy applications when a quick, more magnified view is desired without being chained to a tripod.

Other Binocular Features
The next thing to do is take a good look at the binoculars you are about to purchase. Check out the lenses in the light. Do you see blue, green, or red? Almost binoculars have anti-reflection coatings on their air to glass surfaces, but not all are created equal. Coatings on binocular lenses were meant to assist light transmission of the object you’re focusing on and cancelling ambient light. Simply “coated” in the description means they probably only have this special assistance on the first and last lens elements – the ones you’re looking at. The same can also be said of the term “multi-coated”, it’s probably just the exterior lens surface, but at least there’s more than one layer! “Fully coated” means all the air-to-glass surfaces are coated, which is better… and “fully multi-coated” is best. Keeping stray light from bouncing around and spoiling the light you want to see is very important, but beware ruby coated lenses… These were meant for bright daylight applications and will rob astronomical binoculars of the light they seek.

Last, but not least, is a scary word – collimation. Don’t be afraid of it. It only means the the optics and the mechanics are properly aligned. Most cheap binoculars suffer from poor collimation, but that doesn’t mean you can’t find an inexpensive pair of binoculars that are well collimated. How can you tell? Take a look through them with both eyes. If you can’t focus at long distance, short distance and a distance in-between, there is something wrong. If you can’t close either eye and come to focus with the other, there’s something wrong. Using poorly collimated binoculars for any length of time causes eye strain you won’t soon forget.

Price range for Astronomy Binoculars
So, how much? What does a good pair of binoculars for astronomy cost? First look for a quality manufacturer. Just because you’ve chosen a good name doesn’t mean you’re draining your pocket. Smaller astronomy binoculars of high quality are usually around or under $25. Mid-sized astronomy binoculars range from $50 to $75 as a rule. Large astronomy binoculars can run from a little over $100 to several hundred dollars. Of course, choosing a high-end pair of binoculars of any size will cost more, but with proper care they can be handed down through generations of users. Keep in mind little things that might be good for your applications, like rubber-coated binoculars for children who bang them around more, or fog-proof lenses if you live in a high humidity area. Cases, lens caps and neck straps are important, too.

Some Suggested Binoculars
The purpose of this guide was to help you understand how to choose the best binoculars for astronomy. But if you trust me, and just want some suggestions… here you go.

For all purpose astronomy binoculars, I’d recommend the Celestron Up-Close and Ultima Series as well as Meade Travel View. Nikkon and Bushnell binoculars in this size range are an investment, and best undertaken after you decide if binocular astronomy and this size is right for you. Amazon.com offers a wide range of these binoculars.

While so much information on binoculars may seem a little confusing at first, just a little study will take you on your way to discovering astronomy binoculars that are perfect for you!

Universe Today Exclusive – Cygnus Nova V2491 Revealed for Readers

Clouds got you down? No chance of seeing V2491 Cyg because of the weather? Are you sleeping when Cygnus is up? One of the most beautiful facets of having an astronomer around is being able to share information with other observatories around the world and put them to work. This time the job was handed to our friends in Australia who were able to produce for us an exclusive look at an elusive nova.

In trial test on image acquisition utilizing the combined resources of Macedon Ranges Observatory and its resident astronomers, they were able to nab the nova in less than 30 minutes from notice being given. The image was then processed, labeled and returned again halfway around the world within hours for UT readers to enjoy.

On 15 April 2008 from 10.50 to 11.40 UT, Joseph Brimacombe from Cairns, Queensland, Australia was busy employing remote technology located at 32 degrees 54 minutes North; 15 degrees 32 min West and recording the nova with an SBIG ST-L-1001 CCD camera. Coupled with a 20″ Ritchey-Chretien Optical System, 8 separate exposures of 5 minutes duration were taken in white light, and the results speak for themselves.

By comparing the zoom map of the area presented in the original Cygnus Nova Alert it’s easy to see the identifying line of three stars which helps orient the viewer to the general area. As predicted, Cygnus Nova V2491 easily stands out amongst the background stars.

Says Observatory Director, Burt Candusio: “The exercise was primarily designed to test the imaging and response capabilities of M.R.O resident astronomers. If another similar event presents itself, we would now be confident in our capabilities of imaging a target effectively and quickly from any part of the globe. A most pleasing outcome for all concerned and especially for Joseph Brimacombe.”

But the thrill was nothing compared to Joe’s own success: “Trapped under the mostly cloudy Cairns skies, I was remotely imaging the running chicken nebula (NGC 2944) at the Macedon Range Observatory and the Pinwheel galaxy (M101) at New Mexico Skies, when my good mate Bert Candusio notified me of a new nova (V2491) in Cygnus. At the time, it was 60 degrees below the horizon at the MRO, but 50 degrees above the horizon at NMS, so I slewed my 20 inch RCOS at NMS to the co-ordinates Bert had provided. There was just sufficient time before dawn to snap 8 x 5 min luminance frames of a dense star field. Both Bert and I were delighted to find the nova near the middle of the frame. We estimate the magnitude at around 10. The beauty of NGC 2944 and M101 was not a match for the excitement of imaging an acute stellar explosion for the first time!”

In the case of V2491 Cyg, the only thing better than having the stars up above is having friends down under. Our thanks go to our friends at Macedon Ranges Observatory!

Podcast: Getting Around the Solar System

Have you ever wondered what it takes to get a spacecraft off the Earth and into space. And how managers at NASA can actually navigate a spacecraft to another planet? And how does a gravity assist work? And how do they get them into orbit? And how do they land? So many questions…

Click here to download the episode

Getting Around the Solar Spider – Show notes and transcript

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

New Technique Can Estimate Size and Frequency of Meteorite Impacts

News today from the National Science Foundation will have an impact on how scientists are able to study…. well, impacts. A team of geologists has developed a new way of determining the size and frequency of meteorites that have collided with Earth in the past. By studying sediments found on the ocean floor and looking for isotopes of the rare element osmium, scientists can now figure out not only when a meteorite impact occurred in Earth’s history, but also the size of the meteorite. One of the most exciting benefits of this new technique is the potential for identifying previously unknown impacts.

When meteorites collide with Earth, they carry a different osmium isotope ratio than the levels normally seen throughout the oceans.

“The vaporization of meteorites carries a pulse of this rare element into the area where they landed,” says Rodey Batiza of the National Science Foundation, which funded the research. “The osmium mixes throughout the ocean quickly. Records of these impact-induced changes in ocean chemistry are then preserved in deep-sea sediments.”

François Paquay, a geologist at the University of Hawaii at Manoa analyzed samples from two sites where core samples of the ocean floor were taken, one near the equatorial Pacific and another located off of the tip of South Africa. He measured osmium isotope levels during the late Eocene period, a time during which large meteorite impacts are known to have occurred.

“The record in marine sediments allowed us to discover how osmium changes in the ocean during and after an impact,” says Paquay.

The scientists believe this new approach to estimating impact size will become an important complement to a more well-known method based on iridium.

Paquay’s team also used this method to make estimates of impact size at the Cretaceous-Tertiary (K-T) boundary 65 million years ago. Since the osmium carried by meteorites is dissolved in seawater, the geologists were able to use their method to estimate the size of the K-T meteorite as four to six kilometers in diameter. The meteorite was the trigger, scientists believe, for the mass extinction of dinosaurs and other life forms.

But Paquay doesn’t believe this method will work for events larger than the K-T impact. With such a large meteorite impact, the meteorite contribution of osmium to the oceans would overwhelm existing levels of the element, making it impossible to sort out the osmium’s origin.
But it will be interesting to follow this to see if new, unknown impacts in Earth’s history can be discovered.

Original News Source: Eureka Alert

What was Before the Big Bang? An Identical, Reversed Universe

The Big Bounce Theory
Graphic of the Big Bounce concept (Relativity4Engineers.com)

So what did exist before the Big Bang? This question would normally belong in the realms of deep philosophical thinking; the laws of physics have no right to probe beyond the Big Bang barrier. There can be no understanding of what was there before. We have no experience, no observational capability and no way of travelling back through it (we can’t even calculate it), so how can physicists even begin to think they can answer this question? Well, a new study of Loop Quantum Gravity (LQG) is challenging this view, perhaps there is a way of looking into the pre-Big Bang “universe”. And the conclusion? The Big Bang was more of a “Big Bounce”, and the pre-bounce universe had the same physics as our universe… just backwards… Confused? I am

LQG is a tough theory to put into words, but it basically addresses the problems associated with the incompatibilities behind quantum theory and general relativity, two crucial theories that characterize our universe. If these two theories are not compatible with each other, the search for the “Theory Of Everything” will be hindered, disallowing gravity to merge with the “Grand Unified Theory” (a.k.a. the electronuclear force). LQG quantizes gravity, thereby providing a possible explanation for gravity and a possible key to unlocking the Theory Of Everything. However, from the outset, LQG has many critics as there is little direct or indirect evidence backing up the theory.

See the previous Universe Today article on Loop Quantum Gravity»

Regardless, much work is being done into this area of research. The primary consequence to come from LQG is that it predicts that the Big Bang which occurred 13.7 billion years ago was actually a “Big Bounce”; our universe is therefore the product of a contracting universe before the Big Bang. The previous universe (or our universe “twin”) contracted to a single point (which could be interpreted as a “Big Crunch”) and then rebounded in a Big Bounce to produce the Big Bang as we’ve learned to accept as the birth of the universe as we know it. But until now, although the pre-bounce universe has been predicted, its characteristics could not be known. No information about the pre-bounce universe could be observed in today’s universe, the Big Bounce causes a “cosmic amnesia”, destroying all information of the previous universe.

Now, physicists Alejandro Corichi from Universidad Nacional Autónoma de México and Parampreet Singh from the Perimeter Institute for Theoretical Physics in Ontario are working on a simplified Loop Quantum Gravity (sLQG) theory where they approximate the value of the “quantum constraint”, a key equation in the LQG theory. What happens next is a little surprising. From their calculations, it would appear that a universe, identical to our own, with identical mechanics, existed before the Big Bounce.

…the twin universe will have the same laws of physics and, in particular, the same notion of time as in ours. The laws of physics will not change because the evolution is always unitary, which is the nicest way a quantum system can evolve. In our analogy, it will look identical to its twin when seen from afar; one could not distinguish them.” – Parampreet Singh

We are not talking about an alternate dimension; we are talking about an identical universe with the same space-time and quantum characteristics as our own. If we look at our universe now (13.7 billion years post-bounce), it would be identical to the universe 13.7 billion years before the Big Bounce. The only difference being the direction of time would be opposite; the pre-bounce universe would be reversed.

In the universe before the bounce, all the general features will be the same. It will follow the same dynamical equations, the Einstein’s equations when the universe is large. Our model predicts that this happens when the universe becomes of the order 100 times larger than the Planck size. Further, the matter content will be the same, and it will have the same evolution. Since the pre-bounce universe is contracting, it will look as if we were looking at ours backward in time.” – Parampreet Singh

Analysing what happened before the Big Bang is only part of the story. By making this approximation of a key LQG equation, Singh and Corichi are working on models where galaxies and other physical structures leave an imprint in the pre-bounce universe to influence the post-bounce universe. Would these structures be distributed in similar ways? Will the structures in one universe be similar or identical to structures in the other universe? There may also be an opportunity to look into the future of this universe and predict whether the conditions are right for another Big Bounce (once can imagine repeated bounces, producing a cycle of universes).

For now, this research is highly theoretical and any observational evidence will remain sparse for the time being. Although this is the case, it does begin to probe the big question and may push physics a bit closer toward describing what existed before the Big Bang…

Source: Physorg.com

More Space News From Russia

When it rains space news from Russia, it pours. Not only did the news break today about the Russian Space Agency’s plans to send monkeys to Mars, but also, Russia wants to build an Earth-orbiting factory to build large, interplanetary ships that might be too large to launch from Earth. Additionally, Roscosmos, the Russian space agency said that beginning in 2010, they will likely terminate ferrying space tourists to the International Space Station.

According to the head of Roscosmos Anatoly Perminov, the space agency proposed building a manned assembly complex in Earth orbit and the Russian Security Council supported the idea in an April 11, 2008 meeting. No word on exactly when an orbiting spaceship assembly line would be constructed, but Perminov said it likely wouldn’t be built until after the ISS is completed, which they said would be about 2020. Also, no word if the interplanetary ships will be built for humans or monkeys.

As far as curtailing the program that brings space tourists to the ISS, the Perminov said the increase in crew size on the ISS from the current three members to six in 2009, and then the proposed retirement of the space shuttle in 2010, will put “growing pressure” on the Russian Soyuz spacecraft that carries crews and supplies to the space station. Perminov said they will no longer accept proposals from space tourists, adding that space tourism shouldn’t interfere with scientific research. Roscosmos teamed up with the company Space Adventures beginning in 2001 to bring tourists to the ISS, which seemed to be a fairly lucrative program for the cash-strapped Russian space agency. Existing contracts to bring tourists to the station will be fulfilled, Perminov said.

Dennis Tito became the first space tourist in 2001 when he paid $20 million to ride the Soyuz for a week-long stay on the ISS. The next (and sixth) tourist will be game developer Richard Garriott, scheduled for a Soyuz flight in October 2008.

Original News Source: Lenta Ru (translated)

Finally, A Sport for Geeks: Rocket Racing League Announces First Live Exhibition

Combining the exhilaration of racing, with the power of rocket engines and the appeal of video gaming, Rocket Racing League (RRL) CEO Granger Whitelaw said the new sports entertainment league is the sport for geeks. “We haven’t really had a sport, but now we do,” said Whitelaw, a self-professed geek at a press conference on April 14, 2008. “We now have one where we combine real athletes and real heroes with rocket planes and with gaming that we love to do so much.” At the press conference, members of the RRL announced its live first exhibition, to be held August 1st and 2nd at the EAA AirVenture airshow in Oshkosh, Wisconsin, one of the largest airshows in the world. Additional exhibitions later in the year were also announced.

Whitelaw said in this new “futuristic and innovative sport” pilots will race rocket powered aircraft through a three-dimensional track in the sky. The planes will compete side by side, and feature multiple races pitting up to ten Rocket Racers with a 4-lap, multiple elimination heat format on a 5-mile “Formula One”-like closed circuit raceway. The Rocket Racer pilots will view the “raceway in the sky” via cockpit in-panel and 3D helmet displays. On the ground, spectators at airshows can watch the action live, or on screens that include the 3-D raceway. And in this ultimate reality show, viewers at home can watch on television, and gamers can take part with virtual competition.

In August, for the first exhibition, two Rocket Racers will compete head-to-head in a demonstration race and the expected 700,000 people in attendance at EAA AirVenture will witness the racing action live on multiple 50 foot large projection screens.

The RRL will have multiple aerial cameras and 5 cameras on each plane.

Whitelaw said that although they believe their rocket planes are some of the safest air vehicles available, they will take multiple precautions to ensure crowd safety at the live events, specifically, never flying directly at the crowds. “Every step we are taking with the development of the rocket racers now, involves safety considerations,” Whitelaw said.

Each of the four heats will last about 10-12 minutes, with pitstops of 10-12 minutes. “It will similar to periods in hockey or football, and will give us time to do color and introduce the pilots,” said Whitelaw. The RRL will be better than football, he said, which only has about seven minutes of real action in a game with the rest being just talk. “It will be very exciting and it will be all about competition.”

Whitelaw said the RRL has been offered two television deals, and that all the competitions will be televised. “We are going to reach out to different audiences, both in the US and worldwide,” he said.

Whitelaw predicted the RRL video game will also be a big success. The RRL built a video game simulator 2 years ago that they have set up at air shows for people to try. “The tent is usually full all day with young and old alike…this is really going to bring out a new fan base,” Whitelaw said. The full video game won’t be released until the league is actually in operation.

Here are the remaining exhibition dates:

Reno National Championship Air Races (Reno, NV) – September 10-14
X Prize Cup (Las Cruces, NM) – TBD 2008
Aviation Nation, Nellis AFB, (Las Vegas, NV) – November 8-9

In these days of environmental concerns, Whilelaw was asked about the types of fuel used in the rocket planes. “I like to say that 95% of our fuel grows on trees,” he said. “We use cryogenic compressed liquid oxygen for the main part of the thrust for the rocket planes. The Armadillo plane uses ethanol. The X-COR rocket racer uses kerosene. We’re trying to be environmentally friendly as possible.”

The RRL was founded in 2005 by Whitelaw, a two-time Indianapolis 500 winning team partner and X PRIZE Chairman and CEO Peter Diamandis. For more information on the Rocket Racing League, visit www.rocketracingleague.com.

Original News Source: RRL Press Conference

New Earthrise and Earthset Movies from Kaguya

Ian reported yesterday on the high definition topographical maps recently released by the Japanese SELENE mission, also known as Kaguya, which will provide exact locations of essential minerals to future lunar explorers. And now, via Emily Lakdawalla at the Planetary Society comes more from Kaguya — movies of an Earthrise and Earthset from the moon. While the movies don’t provide much as far as scientific data, they are off the charts as far being aesthetically pleasing and just tremendously magnificent. Emily grabbed individual frames from the longer, but smoother high-definition movies that the Japanese Space Agency JAXA created from the HD Camera on board the moon-orbiting Kaguya to create quick little movies. Above is the Earthrise quick movie.


Here’s the quick Earthset movie Emily created. And here’s the links to the hi-def versions at JAXA for Earthrise and Earthset.

However, these longer and smoother movies are still only 25% of the full resolution of the movies. JAXA has not been releasing the full resolution Kaguya data on the internet, as they are “saving” the really high-def stuff for commercial and educational purposes.

Emily reported that HD camera on board the Kaguya spacecraft generates too much data for live transmission; instead the video is compressed and stored within the camera system. Then, it takes about 20 minutes to transmit a 1-minute video to Earth. See Emily’s post for more info.

Original News Source: The Planetary Society

Universe Today Astronomy Picture of the Week: NGC 3199 – The Interstellar Snow Plough

NGC 3199 - Credit: Ken Crawford

One thing is certain, Wolf-Rayet stars produce some interesting
science. In this week’s portrait we see a distorted bubble produced
by a moving star blowing a strong stellar wind into a surrounding
uniform interstellar medium – yet is isn’t uniform. What exactly is
going on here?

Hanging out some 11,736 light years away in the southern constellation
of Carina (RA 10:17:24.0 Dec -57:55:18), NGC 3199 is classed as a
diffuse nebula or supernova remnant. Discovered by John Herschel in
1834, it has been known throughout historic astronomy observations as
bright, large, crescent-shaped nebula with embedded stars, but modern
astronomy shows it as much more. It’s being pushed along by
Wolf-Rayet star 18.

Says Dr. Michael Corcoran: “Wolf-Rayet stars (named for their
discoverers) are very large, massive stars (stars which are about 20
times bigger than the sun) nearly at the end of their stellar lives.
As these stars age, material which the stars have cooked up in their
central nuclear furnaces (like carbon and oxygen) gradually reach the
surface of the star. When enough material reaches the surface, it
absorbs so much of the intense light from the star that an enormously
strong wind starts to blow from the star’s surface. This wind becomes
so thick that it totally obscures the star – so when we look at a
Wolf-Rayet star, we’re really just seeing this thick wind. The amount
of material which the wind carries away is very large – typically, a
mass equivalent to that of the entire earth is lost from the star each
year. The mass loss is so large that it significantly shortens the
star’s life, and as you can imagine has important effects on the space
surrounding the star too. We think that very massive stars become
Wolf-Rayet stars just before they explode as supernova (though no one
has yet seen such a star explode).

At magnitude 11, NGC 3199 is observable with larger amateur
telescopes, but the crescent shape is cause for study by some of the
finest research telescopes and astronomers in the world. Through
optical observations, the ring nebula and cavities around WF stars have
painted a history of mass loss in these highly evolved stellar
curiosities. By studying molecular gases associated with Wolf-Rayet
stars
, it appears that some materials seem to be avoiding optical
emission.

In reading scientific reports submitted by A. P. Marston, molecular
gas has already been observed around Wolf-Rayet Star 18 – the first to
confirm the presence of HCN, HCO+, CN, and HNC and molecules. This
makes the Wolf-Rayet ring nebula NGC 3199 very unique and filled
associated molecular gas that took the form clumpy ejecta and
interstellar material. At one time, NGC 3199’s formation was believed
to be caused by bow shock, but current data now shows the associated
Wolf Rayet star is moving at a right angle to its enveloping
environment. Could this be an indication that something else is at
work here? Astronomers seem to think so.

According to their information, it is possible the northern area of
the optically bright nebula is being torn apart by a possible blowout
of Wolf Rayet wind. This, in turn, affects the surrounding ejecta and
could very well account for the observed velocity. By modeling
molecular abundances, the central Wolf Rayet star could be contributing a
portion of its material to this nebula as ejecta. Despite its still
unsolved mysteries, NGC 3199 is a stunning portrait. J.E. Dyson and
Ghanbari summed it up best when they described it as an “interstellar
snow plough”.

This week’s awesome astronomy picture is the work of Ken Crawford, taken at Macedon Ranges Observatory.

Says Ken: “This image was taken using an Apogee CCD Camera that uses primarily Narrow Band data which is color mapped mixed with RGB for natural star colors and back ground balancing. The bright blue area shows lots of OIII (ionized oxygen) signal which really shows the direction of the star movement well. The star is said to be moving at about 60 km/s through the interstellar gas.”