Intel to Protect Microchips from Cosmic Rays

A simulation of the impact a cosmic ray has on entering the atmosphere (credit: AIRES package/Chicago University)

As computers become more advanced, the microprocessors inside them shrink in size and use less electrical current. These new, energy efficient chips can be crammed closer together, increasing the number of calculations that can be done per second, therefore making the computer more powerful. But even the mighty supercomputer has its Achilles heel: an increased sensitivity to interference from charged particles originating beyond your office. These highly energetic particles come from space and may cause critical hardware to miscalculate, possibly putting lives at risk.

Foreseeing this problem, microchip manufacturer Intel has begun devising ways to detect when a shower of charged particles may hit their chips, so when they do, calculations can be re-run to iron out any errors…

Cosmic rays originate from our Sun, supernovae and other unknown cosmic sources. Typically, they are very energetic protons that zip through space close to the speed of light. They could be so powerful that on impact with the upper atmosphere of the Earth it has been postulated that they may create micro black holes. Naturally these energetic particles can cause some damage. In fact, they may be a huge barrier to travelling beyond the safety of Earth’s magnetic field (the magnetosphere deflects most cosmic radiation, even astronauts in Earth orbit are well shielded), the health of astronauts will be severely damaged during prolonged interplanetary flight.

But what about on Earth, where we are protected from the full force of cosmic rays? Although a small portion of our annual radiation dose comes from cosmic rays (roughly 13%), they can have extensive effects over large volumes of the atmosphere. As cosmic rays collide with atmospheric molecules, a cascade of light particles is produced. This is known as an “air shower”. The billions of particles within the air shower from a single impact are often highly charged themselves (but of lesser energy than the parent cosmic ray), but the physics behind the air shower is beginning to grow in importance, especially in the realms of computing.

It seems computer microprocessor manufacturer Intel has been pondering the same question. They have just released a patent detailing their plans should a cosmic ray penetrate the atmosphere and hit one of their delicate microchips. The problem will come when computing becomes so advanced that the tiny chips may “misfire” when a comic ray impact event occurs. Should the unlucky chip be hit by a cosmic ray, a spike of electrical current may be exerted across the circuitry, causing a miscalculation.

This may sound pretty benign; after all, what’s one miscalculation in billions? Intel’s senior scientist Eric Hannah explains:

All our logic is based on charge, so it gets interference. […] You could be going down the autobahn [German freeway] at 200 miles an hour and suddenly discover your anti-lock braking system doesn’t work because it had a cosmic ray event.” – Eric Hannah.

After all, computers are getting smaller and cheaper, they are being used everywhere including critical systems like the braking system described by Hannah above. As they are so small, many more chips can occupy computers, increasing the risk. Where a basic, one processor computer may only experience one cosmic ray event in several years (producing an unnoticed calculation error), supercomputers with tens of thousands of processors may suffer 10-20 cosmic ray events per week. What’s more, in the near future even humble personal laptops may have the computing power of today’s supercomputer; 10-20 calculation errors per week would be unworkable, there would be too high a risk of data loss, software corruption or hardware failure.

Orbital space stations, satellites and interplanetary spacecraft also come to mind. Space technology embraces advanced computing as you get far more processing power in a smaller package, reducing weight, size and cost. What happens when a calculation error occurs when a cosmic ray hits a satellite’s circuitry? A single miscalculation could spell the satellite’s fate. I’d dread to think what could happen to future manned missions to the Moon, Mars and beyond.

It is hoped that Intel’s plan may be the answer to this ominous problem. They want to manufacture a cosmic ray event tracker that would detect a cosmic ray impact, and then instruct the processor to recalculate the previous calculations from the point before the cosmic ray struck. This way the error can be purged from the system before it becomes a problem.

There will of course be many technical difficulties to overcome before a fast detector is developed; in fact Eric Hannah admits that it will be hard to say when such a device may become a practical reality. Regardless, the problem has been identified and scientists are working on a solution, at least it’s a start…

Source: BBC

Moon for Kids

New Moon Schedules
Moon Phases

Right now, while the sky still gets dark early, is a great time to enjoy looking at the Moon with your small children or grandchildren. Even if you don’t have a telescope or binoculars, there are lots of fun ways that you can both enjoy our mysterious Moon together. Each evening as it gets dark, go outside and take a look at where the Moon is. There are nights when it will be cloudy, so it makes the game even more fun!

Having the Moon in the sky is something that we noticed all our lives, but most of us don’t think very much about it. When was the last time you saw the Moon? What did it look like? If you went outside, where would you find it? By learning to keep a “Moon Journal” you will soon learn much more about Earth’s nearest neighbor.

Keeping a Moon Journal is easy. All you need is a pencil and paper, and to understand where the cardinal directions are outside. If you have a compass, that’s great. But if you do not, remember to watch where the Sun sets. Next you need to choose a place! Look for an area that you can see most of the southern sky. Use your compass to find south or keep your right shoulder to the direction the Sun set. Don’t worry if there are things in the way, because trees, houses and even power wires will help with what we’re going to do. Mark the spot you chose by drawing an X on the pavement with a piece of chalk, or poking a stick into the ground. You must remember to return to this same spot each time.

Simple sketches make for lunar fun!Now you are ready to begin observing! The most important part about keeping a Moon Journal is to look for the Moon the same time each night. Right now about 8:30 or 9:00 will do very well. Go outside and look for the Moon. Do you see it? Good! Make a very simple picture of where you see the Moon in the sky and be sure to include things like a house or tree in your picture. It doesn’t have to be any more difficult than what you see here. Try your observations for several nights and see if you can learn to predict where the Moon will appear and what it will look like!

Now, let’s experiment with why the Moon has phases. All it takes is a bright flashlight and a ball on a stick. (Even an apple on a fork makes a great Moon, and you can eat it, too!) Whoever is holding the flashlight becomes the Sun and the Earth is your head. If you hold the ball out at arm’s length just above the flashlight while facing the Sun, you can’t see it. This is New Moon. The Moon is still in the sky, but we can’t see it because of the bright sunlight. Now keep the ball at arm’s length and turn slowly counterclockwise and watch what happens. That’s right! You see the ball go through phases, just like our Moon. When your back is towards the Sun, you see the ball as whole, and it will be Full Moon. The Moon will rise on the opposite side of the Earth at the same time the Sun goes down. Keep turning and you’ll see the phases reverse as the Moon moves back towards the Sun again.

Ask your child if he or she has ever seen the Moon during the daytime. Where in the sky do they think the Sun and the Moon needs to be for this to happen? What would happen if the Moon was in front of the Sun? How about the Earth?

Simple experiments like this are a great way to teach children more about astronomy!

Soyuz Launches With South Korea’s First Astronaut

Soyuz TMA- 12 launch. Image credit: NASA TV

South Korea’s first astronaut and two Russian cosmonauts blasted off from the Baikonur Cosmodrome in Kazakhstan today and are on their way to the International Space Station. So-Yeon Yi, a 29-year-old female engineer joined incoming Expedition 17 commander Sergei Volkov and flight engineer Oleg Kononenko in the three-seat Soyuz TMA-12 spacecraft, which lifted off at 7:16:39 a.m. EDT. Besides conducting some scientific research Yi has said she will sing to her crewmates and prepare some Korean cuisine for them as well.

Yi, the youngest woman to ever launch into space, is flying under a commercial agreement between the Russian space agency and South Korea’s ministry of science and technology. The Soyuz will catch up with the ISS in two days, and dock at the Pirs airlock module around 9:00 a.m. on Thursday, April 10.

Yi will spend nine days aboard the space station and return to Earth on April 19 with outgoing Expedition 16 commander Peggy Whitson and flight engineer Yuri Malenchenko, currently on board the ISS. The other astronaut on the space station, and the third member of the Expedition 16 crew, NASA astronaut Garrett Reisman, will remain aboard the lab complex with Volkov and Kononenko and become a member of Expedition 17. Reisman came to the station aboard the shuttle Endeavour in March. He will be relieved in early June by astronaut Gregory Chamitoff, scheduled to launch May 31 aboard the shuttle Discovery.

Volkov, 35, is the son of cosmonaut Alexander Volkov and is the first second-generation cosmonaut or astronaut to fly in space. The elder Volkov spent one expedition on board the Soviet Salyut space station (Salyut 7 in 1985, for 65 days) and two stay on board the Mir space station (Mir 4 in 1988 for 152 days and Mir 10 in 1991 for 175 days.)

In video shown during the Soyuz’ climb to space, Yi, seated to Volkov’s right, could be seen enthusiastically waving a thumbs up at the camera and smiling.

Original News Sources: NASA, NASA TV

A Case of MOND Over Dark Matter

According to Newton’s Second Law of Dynamics, objects on the farthest edges of galaxies should have lower velocities than objects near the center. But observations confirm that galaxies rotate with a uniform velocity. Some astronomers believe the orbital behavior of galaxies can be explained more accurately with Modified Newtonian Dynamics (MOND) — a modified version of Newton’s Second Law — than by the rival, but more widely accepted, theory of dark matter. The dark matter theory assumes that a halo of dark matter surrounds each galaxy, providing enough matter (and gravity) that all the stars in a galaxy disc orbit with the same velocity. MOND, however uses a different explanation, and a recent study of eight dwarf galaxies that orbit the Milky Way seems to favor the MOND approach over the dark matter theory.

“MOND was first suggested to account for things that we see in the distant universe,” said Garry Angus, of the University of St Andrews. “This is the first detailed study in which we’ve been able to test out the theory on something close to home. The MOND calculations and the observations appear to agree amazingly well.”

Usually the equation F=ma (force = mass X acceleration) solves your basic acceleration problems. But it doesn’t explain the observed rotation of galaxies. MOND suggests that at low values of acceleration, the acceleration of a particle is not linearly proportional to the force. According to Angus, MOND adds a new constant of nature (a0) to physics, besides the speed of light and Planck’s constant. Above the constant, accelerations are exactly as predicted by Newton’s second law (F=ma). Below it, gravity decays with distance from a mass, rather than distance squared. This constant is so small that it goes unnoticed with the large accelerations that we experience in everyday life. For instance, when we drop a ball the gravity is 100 billion times stronger than a0 and the accelerated motion of the Earth round the Sun is 50 million times stronger. However, when objects are accelerating extremely slowly, as we observe in galaxies or clusters of galaxies, then the constant makes a significant difference to the resulting gravitational forces.

When MOND is applied to nearby dwarf galaxies, one effect is that tidal forces from the Milky Way, which have a negligible effect in classical Newtonian Mechanics, can actually make a big difference. This is particularly significant for the dwarfs orbiting close to our Galaxy.

“In these dwarf galaxies, the internal gravity is very weak compared to the gravity of the Milky Way,” said Angus. “MOND suggests that the Milky Way is a bit like a bank that loans out gravity to nearby dwarf galaxies to make them more stable. However, there are conditions on the loan: if the dwarf galaxies start to approach the bank, the loan is gradually reduced or even cancelled and the dwarfs must pay it back. In two galaxies, we’ve seen what could be signs that they’ve come too close too quickly and are unable to repay the loan fast enough. This appears to have caused disruption to their equilibrium.”

Angus used MOND to calculate the ratio of mass to amount of light emitted by the stars in the dwarf galaxies from the observed random velocities of the stars collected independently. He also calculated the orbital paths of the stars in the dwarf galaxies. In all eight cases, the MOND calculations for the orbits were within predictions. For six of the eight galaxies, the calculations were also a good match to expected values for mass-to-light ratios; however for two galaxies, Sextans and Draco, the ratios were very high, which could well suggest tidal effects. The value for Sextans could also be due to poor quality measurements of the galaxy’s luminosity, which Angus said are improving all the time for these ultra dim objects.

“These tidal effects can be tested by updating the 13 year old luminosity of Sextans and making accurate observations of the orbits of Draco and Sextans around the Milky Way. We also need to carry out some detailed simulations to understand the exact mechanisms of the tidal heating,” said Angus.

If Newton’s gravity holds true, the dark matter needed in the dwarf galaxies has constant density in the center which is contrary to theoretical predictions, which suggest density should rise to the center.

“Even without direct detection, the dark matter theory is difficult to prove or refute and although we may not be able to prove whether MOND is correct, by carrying out these kind of tests we can see if it continues to hold up or if it is definitely ruled out,” said Angus.

Original News Source: Royal Astronomy Society’s National Astronomy Meeting

If ET Calls, Would We Be Told?

SETI's Alien Telescope Array (ATA) listens day and night for a signal from space. Credit: SETI

If a verified message from aliens is ever received, would the public be told about it? SETI — the Search for Extra Terrestrial Intelligence – does have an international protocol that if an alien signal is ever received, it would be disseminated among the astronomical community and made public. And of course, says Mac Tonnies at the SETI Blog, “international cooperation might be necessary in order to distinguish a legitimate alien signal from any number of phenomena capable of generating false alarms.” But what if the signal is more than just extra-terrestrials saying hello? Tonnies believes SETI’s plans for full disclosure only makes sense if the message is fairly benign. If the signal was a notice of impending doom from a black hole, supernova, or alien invasion –something we on Earth had little power to do anything about — Tonnies questions whether governments would choose to make such information public. But could something of this magnitude really be kept under wraps?

Frankly, I hadn’t really considered this scenario. When I think about SETI and the possibility of communication with an alien species, I envision, perhaps naively, what Tonnies calls the “lofty, abstract dialogue immortalized by Carl Sagan.” But of course, we have no idea of what any alien intelligence would like to say to us. If it was bad news, would governments of the world elect to withhold the information from the public?

Intrigued by Tonnies’ blog post, I contacted him to ask that question.

“I think it’s a very real possibility that generally goes unspoken,” said Tonnies, an author, essayist and blogger. “In the event of a bona fide signal, the public may only be made privy to part of it. It depends on the content and context of the message.”

Tonnies questions whether governments would elect to gamble with their respective economies and socio-political agendas for the sake of imparting knowledge that might only cause mayhem.

But wouldn’t governments want the people of the world to know so that intellectual resources could be pooled to try to find a solution to the problem? And what about the concept of an alien message bringing the world together?

“I think uniting the people of the world is the last thing governments want,” said Tonnies. “A rush to counter some cosmic threat is likely to have a war-time character, at least among scientists. And this is assuming that the threat we’re being warned about is something that can be acted upon with the technology available to us. If we happen across a generic warning, there’s no promise we’ll have the savvy to do anything about it given our level of development. If that’s the case, why would we expect prompt disclosure?”

Logically, however, it seems unlikely that aliens would call just to tell us we’re doomed. “It’s pretty foolish to expect aliens to conform to our definition of altruism — although I’m drawn to the idea of a ‘Galactic Emergency Broadcast System,'” said Tonnies. “Maybe ETs feel compelled to give less advanced civilizations a “heads up” in the event on some interstellar crisis because we might make for meaningful companionship a few million years from now.”

Maybe I’ve watched too many movies, but I’m still doubtful that an alien message, whether good news or bad, could be withheld from public knowledge. It would be too big, too transformational, too altering an experience not to be shared.

Original News Source: SETI BLog

Slowing to Mars Speed

When the Mars Science Laboratory (MSL) goes streaking through the Martian atmosphere at more than twice the speed of sound, it’s going to need one of the largest parachutes ever used in a space mission to successfully land a car-sized rover on the Red Planet. The parachute, built by Pioneer Aerospace, has 80 suspension lines, measures more than 50 meters (165 feet) in length, and opens to a diameter of nearly 17 meters (55 feet). It is the largest so called “disk-gap-band” parachute (more on that in a minute) ever built. To get ready for the scheduled 2009 launch of MSL, engineers have begun testing different parts of the parachute in preparation for the ultimate test of the entire parachute system.

Recent successful trials of two parachute packing techniques were performed in the world’s largest wind tunnel at NASA’s Ames Research Center. Engineers loaded chutes into a cannon and fired them out at 85 mph to simulate events during the real landing, looking for damage to line attachments and other parts. All four tests were successful, and high-speed video data is now being analyzed to select a final parachute design for the mission. But the large parachute is just the beginning of the unique landing technique MSL will use.

MSL will be the first planetary mission to use precision landing techniques, using a rocket-guided entry with a heat shield to steer itself toward the Martian surface similar to the way the space shuttle controls its entry through the Earth’s upper atmosphere. In this way, the spacecraft will fly to a desired location above the surface of Mars before deploying its parachute for the final landing. MSL will use a scaled-up version of parachutes used for the Viking and Mars Exploration Rovers mission. Called a Disk-Gap-Band parachute, the name describes the construction of the parachute: a disk forms the canopy, then a small gap, followed by a cylindrical band.

The parachute is deployed using a mortar that is triggered when the vehicle reaches a fixed planet-relative velocity. The parachute is designed to survive loads in excess of 36,000 kilograms (80,000 pounds).

Twice as long and three times as heavy as the Mars Exploration Rovers, MSL is too massive to use airbags like MER. MSL’s large parachute will only be deployed 3 minutes before touchdown which should slow the incoming vehicle enough for retro rockets to fire for the final 500 meters (1,640 feet) of the descent. But after that is where it gets interesting: In the final seconds, the hovering upper stage would act as a crane, lowering the upright rover on a tether to the surface. This is first the “Sky Crane” system will be used in a space mission.

MSL, a roving analytical laboratory, will collect Martian soil and rock samples and analyze them for organic compounds and environmental conditions that could have supported microbial life now or in the past.

Original News Source: JPL Press Release

Universe Today Astronomy Picture of the Week – NGC 6188: An Interstellar Portrait

Just one glimpse at this photo by Don Goldman tells a thousand words. Residing in the southern constellation of Ara, this incredible dust cloud is at home in Ara OB1 association, which covers a full degree of sky. Some 4000 light years away in the disk of our Galaxy, NGC 6188 sprawls across the edge of an expanding bubble of gas that could be as much as 300 light years wide.
Continue reading “Universe Today Astronomy Picture of the Week – NGC 6188: An Interstellar Portrait”

Hansen: Earth at Crisis Point

NASA’s lead climate scientist says Earth has reached a “tipping point” in the amount of carbon dioxide in the atmosphere at 385 parts per million. But James Hansen, director of NASA’s Goddard Institute for Space Studies believes there are ways to solve the problems of excess greenhouse gases in our atmosphere. Hansen submitted a paper to Science magazine today, which outlines a plan for phasing out all coal-fired plants by 2030 and taxing their emissions, as well as banning the building of any new plants unless they are designed to trap and segregate the carbon dioxide they emit. This plan would need the support of policy makers around the world. But Hansen believes policy makers in the US are ignorant about the significance and gravity of climate change because oil companies influence the executive and legislative branches of the US government. Oil interests are also trying to sway the public’s perception of global warming, Hansen said. “The industry is misleading the public and policy makers about the cause of climate change,” he said in an article published by the AFP news agency. “And that is analogous to what the cigarette manufacturers did. They knew smoking caused cancer, but they hired scientists who said that was not the case.”
Continue reading “Hansen: Earth at Crisis Point”

SkyWatcher Alert: Pleiades Occultation on April 8

Moon and M44 by John CudworthSure. For those of us who hang around the night sky, we know the Pleiades and the Moon frequently venture near each other during the course of a year, but it’s much less common for the Moon to be in a crescent phase when they visit. Because the light of the nearby Moon often overpowers the cool, blue star cluster M45, SkyWatchers rarely have the opportunity to see the Moon sedately cover its stars. Not this time… Continue reading “SkyWatcher Alert: Pleiades Occultation on April 8”

Meteorites Make a Big Splash on Mars: New Images of Secondary Craters by HiRISE

A few irregularly shaped craters from secondary, low energy impacts on the Mars surface (NASA)

They look like pockmarks caused by shrapnel from a huge explosion. Actually they are surface features on Mars as seen by the High Resolution Imaging Science Experiment (HiRISE) on board the Mars Reconnaissance Orbiter (MRO). But what are they? They’re not potholes formed by geological processes, they’re not openings to ancient lava tubes, they are impact craters… but not like any impact crater you’ve seen before…

The whole range of secondary impact craters in Chryse Planitia (NASA)

Most meteorite impact craters are roughly circular. If they are fairly new, ejected debris will be obvious emanating from the impact site. However, recent images by the HiRISE instrument appear to show tiny impact craters, in a swarm, each looking like they have been chiselled roughly out of the Martian regolith (pictured left).

The area of the image covers roughly 0.5×1.5 kilometres (25cm/pixel; features down 85cm can be resolved) of a large outflow channel in the Chryse Planitia region. The craters are actually secondary impact craters caused by large chunks of Martian rock being thrown up into the air after an energetic impact from a meteorite. To give an idea of size, the largest craters are about 40 meters across, a little smaller than an Olympic-sized swimming pool. It is not clear where the primary impact crater is in relation to the debris craters in the full-resolution image.

There appears to be dark material inside these small craters, possibly from the debris digging into layered deposits of different minerals just below the surface. Ripples of sand and dust are also evident. As these small craters are quite shallow, they will fill up and level out with wind-blown material quickly, so these secondary craters are fairly young when compared with geological timescales.

Source: HiRISE mission site