Super-Neutron Stars are Possible

122042main_shy_star_burst_lgweb.thumbnail.jpg

When a star like our Sun dies, it’ll end up as a white dwarf. And if a star contains 1.4 times the mass of the Sun, it’ll have enough gravity to turn into a neutron star. Much bigger stars turn into black holes. But now it turns out, neutron stars can be much more massive than astronomers previously believed – and making black holes might be much more difficult.

Astronomers working with the Arecibo Observatory in Puerto Rico have increased the mass limit you need for a neutron star to turn into a black hole.

Paulo Freire, an astronomer from Arecibo presented his latest research at the Winter meeting of the American Astronomical Society, “the matter at the center of a neutron star is highly incompressible. Our new measurements of the mass of neutron stars will help nuclear physicists understand the properties of super-dense matter. It also means that to form a black hole, more mass is needed than previously thought. Thus, in our universe, black holes might be more rare and neutron stars slightly more abundant.

When these massive stars run out of fuel, they collapse down and then explode as a supernova. The core of the star is instantly compressed into a neutron star; an extreme object with a radius of roughly 10 to 16 km across and a density of billions of tonnes per cubic centimetre. A neutron star acts like a single, giant atomic nucleus.

Astronomers used to think that neutron stars needed between 1.6 and 2.5 times the mass of the Sun to collapse – any bigger and you’d get a neutron star. But the new evidence from Arecibo pushes this limit up to 2.7 times the mass of the Sun.

Although that sounds like a slight amount, it can actually have a significant impact on the ratio of neutron stars to black holes in the Universe.

In fact, scientists don’t fully understand how dense neutron stars can really be, and when they might actually switch over to become black holes, “the matter at the center of neutron stars is the densest in the Universe. It is one to two orders of magnitude denser than matter in the atomic nucleus. It is so dense we don’t know what it is made out of,” said Freire. “For that reason, we have at present no idea of how larger or how massive neutron stars can be.”

Original Source: Cornell University

Galaxy’s Arms are Rotating Backwards

ngc4622_full.thumbnail.jpg

As galaxies rotate, their spiral arms usually sweep back, trailing behind the rotation of the galaxy. But astronomers have found a galaxy that defies this convention, with its arms opening outward in the same direction as the rotation of the galaxy’s disk.

The galaxy, known as NGC 4622, lies 200 million light years away in the constellation Centaurus. A team of American astronomers analyzed images of the galaxy, and discovered that it has a previously hidden inner counter clockwise pair of spiral arms.

“Contrary to conventional wisdom, with both an inner counter-clockwise pair and an outer clockwise pair of spiral arms, NGC 4622 must have a pair of leading arms,” said Dr. Gene Byrd from the University of Alabama. “With two pairs of arms winding in opposite directions, one pair must lead and one pair must trail. Which way is which depends on the disk’s rotation. Alternatively, the inner counter clockwise pair must be the leading pair if the disk turns counter clockwise.”

This isn’t the first time the team announced their findings that NGC 4622 had a leading pair of spiral arms. Other astronomers were skeptical of the result, since the galaxy disk is only tilted 19 degrees from face-on, and clumpy clouds of dust could confuse the results.

The researchers came back and used two different independent techniques to verify the direction the arms are spinning.

Further observations are coming, since images from the Hubble Space Telescope revealed a dark dust lane in the centre of the galaxy. This suggests that NGC 4622 may have consumed a smaller companion galaxy, and this could help explain where the additional spiral arms came from.

Original Source: University of Alabama News Release

Death Echos of Material Destroyed Near a Black Hole

207546main_blackhole_art.thumbnail.jpg

Greedy black holes can only consume so much material. The leftover matter backs up into an accretion disk surrounding the black hole. The pull of the black hole is so strong that flashes of radiation emitted from this accretion disk might need to make several orbits around the black hole before it can actually escape the gravitational pull. And these echoes might serve as a probe, allowing astronomers to understand the nature of the black hole itself.

Keigo Fukumura and Demosthenes Kazanas from NASA’s Goddard Space Flight Center revealed their theoretical research at the Winter meeting of the American Astronomical Society.

“The light echoes come about because of the severe warping of spacetime predicted by Einstein,” said Fukumura. “If the black hole is spinning fast, it can literally drag the surrounding space, and this can produce some wild special effects.”

Black holes are surrounded by a disk of searing hot gas rotating at close to the speed of light. A black hole can only consume material so quickly, so any additional matter backs up into this accretion disk. The material in these disks can form hot spots which emit random bursts of X-rays.

When the researchers accounted for the predictions made by Einstein’s general theory of relativity, they realized that the severe warp of spacetime can actually change the path X-rays take as they escape the grasp of the black hole. The X-rays can actually be delayed, depending on the position of the black hole, the position of the flare, and Earth.

If the black hole is rotating at the most extreme speeds, photons can actually make several orbits around the black hole before escaping.

“For each X-ray burst from a hot spot, the observer will receive two or more flashes separated by a constant interval, so even a signal made up from a totally random collection of bursts from hot spots at different positions will contain an echo of itself,” says Kazanas.

Astronomers watching these flashes will have a powerful observational tool they can use to probe the nature of the black hole. The frequency of the flashes would provide astronomers with an accurate way to measure the mass of the black hole.

Original Source: NASA News Release

Black Holes Seen Spinning at the Limits Predicted by Einstein

bh_spin_comp.thumbnail.jpg

The supermassive black holes that lurk at the hearts of the most massive galaxies might be spinning faster than astronomers ever thought. In fact, they might be spinning at the very limits predicted by Einstein’s theory of relativity. Perhaps it’s this extreme rotational speed that generates the energetic jets that blast out of the most massive and active galaxies.

Astronomers used NASA’s Chandra X-Ray Observatory to study 9 giant galaxies that seem to contain rapidly spinning supermassive black holes. These galaxies have large disturbances in their gaseous atmosphere, so the researchers calculated that these black holes must be spinning at near their maximum rates.

“We think these monster black holes are spinning close to the limit set by Einstein’s theory of relatively, which means that they can drag material around them at close to the speed of light,” said Rodrigo Nemmen, a visiting graduate student at Penn State University.

According to Einstein, when a black hole rotates at extreme speeds, it can actually catch up the surrounding space time and make that rotate as well. This effect, linked with the inflowing streams of gas can produce rotating, tightly wound towers of powerful magnetic fields. These fields channel the energy and inflowing gas into powerful jets which blast away from the black hole at nearly the speed of light.

It’s believed that black holes can acquire these extreme rotational speeds when galaxies merge. Fresh material falling onto the black hole just boosts its speed higher and higher until it reaches the hard limits allowed by relativity.

And it’s this extreme rate of spin that forms the power source for the jets. With the number of powerful jets seen pouring out of many galaxies, it might be that most supermassive black holes are spinning at extreme rates; we just haven’t detected them yet.

Supermassive black holes can be very disruptive to their local environments. The jets pump enormous amounts of energy into their surroundings, heating up gas. Since stars can only form when there are large clouds of cold gas, these process of heating can stall star formation in the host galaxy.

Astronomers want to work out the relationship between supermassive black holes and the rates of star formation in the most massive galaxies in the Universe.

Original Source: Chandra News Release

Carnival of Space #36

quadrantids_vaubaillon.thumbnail.jpg

While we’re here blogging our little hearts away at the 211th meeting of the American Astronomical Society, Steinn Sigurdsson is back at home herding all the dynamic news cats we left behind. This week he’s the lucky host for the 36th Carnival of Space, and has pulled together a compelling list of interesting stories for your reading pleasure.

Get the scoop on India’s space plans, read reviews of 200 lunar exploration stories, and see what the quadrantids looked like out the window of an airplane.

Click here to visit the Carnival of Space #36.

And if you’re interested in looking back, here’s an archive to all the past carnivals of space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, let me know if you can be a host, and I’ll schedule you into the calendar.

Finally, if you run a space-related blog, please post a link to the carnival of space. Help us get the word out.

The Building Blocks of the Grand Spirals

2008-0110m74.thumbnail.jpg

We live in a beautiful grand spiral galaxy. But how did we get from the primordial elements after the Big Bang to the intricate and complex structure we live in today? Astronomers have found some of the earliest galactic building blocks; the ancestors of galaxies like our own Milky Way.

The discovery was made by researchers from Rutgers and Penn State universities, and announced at the 211th meeting of the American Astronomical Society in Austin, Texas.

These newly discovered galaxies are tiny, between one-tenth and one-twentieth the mass of the Milky Way. From ground-based telescopes, they just look like individual stars. But the powerful gaze of the Hubble Space Telescope reveals them as regions of active star formation.

The researchers learned that these galaxies are hotbeds of star formation, blazing in a telltale spectrum of ultraviolet radiation that just screams, “I’ve got stellar nurseries”. In many cases, more than 10 of these proto-galaxies came together to form a single spiral galaxy.

“The Hubble Space Telescope delivered striking images of these early galaxies, with 10 times the resolution of ground-based telescopes,” said Caryl Gronwall, a senior research associate in Penn State’s Department of Astronomy & Astrophysics. “They come in a variety of shapes – round, oblong , and even somewhat linear – and we’re starting to make precise measurements of their sizes.”

The galaxies were discovered as part of a five-year census of galaxies in the early Universe. The astronomers searched for these specific kinds of galaxies by detecting the ultraviolet radiation from their bursts of star formation. They then performed follow up observations to find their distance and mass.

Original Source: Rutgers News Release

A Quartet of Stars, Locked in a Tight Embrace

2008-0110quartet.thumbnail.jpg

Astronomers think that many star systems actually contain multiple stars. There are doubles, triples and even quadruple groupings of stars locked together in a gravitational embrace. Astronomers recently discovered a system with 4 stars orbiting within the orbit of Jupiter. It’s a surprising discovery considering no telescope on Earth is powerful enough to separate them into distinct points of light.

The star system, located 166 light-years from here, is called BC 22 5866, and its discovery was announced the Winter meeting of the American Astronomical Society in Austin. An international team of astronomers described how they had been monitoring several hundred star systems when they saw something unusual.

They were analyzing the light from one of hundreds of stars when they realized that its light could be broken into 4 separate stars. Even the most powerful telescopes on Earth can’t actually resolve the stars into separate objects, and that means they’re close together… really close.

The stars are paired up together into binary groupings, and then these two pairs orbit a common centre of gravity. One pair orbits each other in less than 5 days – at a distance of a mere 0.06 astronomical units (1 AU is the distance from the Earth to the Sun). The second pair takes 55 days to complete an orbit, at a distance of 0.26 AU.

And finally, the two pairs take about 9 years to orbit one another at a distance of 5.8 AU – within the orbit of Jupiter in our own Solar System.

It must have been a very special system to allow 4 individual stars to form this closely together.

“The extraordinarily tight configuration of this stellar system tells us that there may have been a single gaseous disk that forced them into such small orbits within the first 100,000 years of their evolution, as the stars could not have formed so close to one another. This is the first evidence of a disk completely encompassing four stars,” says Dr. Shkolnik of the University of Hawaii’s Institute for Astronomy. “It is remarkable how much a single stellar spectrum can tell us about both the present and the past of these stars.”

Original Source: IfA News Release

Hubble Sees a Double Einstein Ring

2008-0110ring.thumbnail.jpg

An Einstein Ring happens when two galaxies are perfectly aligned. The closer galaxy acts as a lens, magnifying and distorting the view of a more distant galaxy. But today astronomers announced that they’ve discovered a double Einstein Ring: three galaxies are perfectly aligned, creating a double ring around the lensing galaxy. The odds of finding something like this are pretty low. And yet… here it is.

The double Einstein Ring image was captured by the Hubble Space Telescope, and shows a central galaxy surrounding by an almost complete ring, with another fainter ring around that. Think of a bull’s-eye.

It was found by an international team of astronomers led by Raphael Gavazzi and Tommaso Treu of the University of California, Santa Barbara, and the results were presented at the 211th meeting of the American Astronomical Society in Austin, Texas.

Treu was pretty excited, “the twin rings were clearly visible in the Hubble image. When I first saw it I said ‘wow, this is insane!’ I could not believe it!”

Here’s how it works. As Einstein predicted, gravity has the power to bend light. So instead of traveling on a straight curve, light that passes close to a large mass is pulled into a curved path. When you have a foreground galaxy perfectly lined up with a background galaxy, the light from the more distant galaxy is distorted into a ring of light.

Although the background galaxy is distorted, it’s also tremendously magnified, allowing astronomers to use the foreground galaxy as a natural telescope to peer much more deeply into the Universe than they would be able to see normally.

In the case of this double ring, the foreground galaxy is 3 billion light-years away. The background galaxy that forms the first ring is 6 billion light-years away, and the second background galaxy is 11 billion-light years away. This means that the background galaxy is being seen when the Universe was less than 3 billion years old.

The alignment also allowed astronomers to measure the mass of the middle galaxy to 1 billion solar masses. This is the first time the mass of a dwarf galaxy has been measured at this kind of distance.

Original Source: Hubble News Release

Supercluster Ruled By the Pull of Dark Matter

2008-0110darkmatter.thumbnail.jpg

Enough of this small stuff, let’s look at the big picture. The really really big picture. In this case, one of the largest patches of the sky ever observed by the Hubble Space Telescope. A new detailed survey was released today that combines 80 separate Hubble images together. In addition to a framework of galaxy clusters, the images show the distribution of dark matter that holds the clusters together – and tears it all apart.

The dark matter survey is part of the Space Telescope Abell 901/902 Galaxy Evolution Survey (STAGES), which looks at one of the larger structures in the Universe: the Abell 901/902 superclusters. This is a region of tremendous violence and chaos. Galaxies are being pulled into the core of the superclusters, and getting distorted and stripped of their gas and dust.

And one of the primary forces of this violence comes from the completely invisible dark matter that makes up the bulk of the matter in the region. Instead of being equally distributed, though, this dark matter has pooled into enormous clumps.

An international team of astronomers used Hubble to measure how individual galaxies are distorted by clouds of dark matter. The dark matter is invisible, but it does have mass, which can pull at the light as it moves past. The astronomers know what different galaxies should probably look like, and then can figure out how much dark matter is in between, distorting the view. It’s actually pretty incredible to see the dark matter map imposed over top of the visible light image.

“Thanks to Hubble’s Advanced Camera for Surveys, we are detcting for the first time the irregular clumps of dark matter in this supercluster,” said Catherine Heymans of the University of British Columbia. “We can even see an extension of the dark matter toward a very hot group of galaxies that are emitting X-rays as they fall into the densest cluster core.”

The Hubble study identified 4 separate regions where the dark matter has pooled into dense clumps, adding up to 100 trillion times the mass of the Sun. They can even make out irregular clumps of dark matter in the supercluster. These areas match the locations where hundreds of old galaxies have already experienced the violent passage from the outskirts of the supercluster into the denser regions.

Original Source: Hubble News Release

Asteroid 2007 WD5 Won’t Hit Mars

2007wd5_image_s.thumbnail.jpg

Sorry to disappoint those of you hoping for some Martian fireworks the end of this month. NASA’s Near Earth Object (NEO) Program office has effectively ruled out the possibility of Asteroid 2007 WD5 impacting Mars. The probability of such an event has dropped dramatically, to approximately 0.01% or 1 in 10,000 odds of an impact. Observers also say the asteroid has no possibility of impact with either Mars or Earth anytime in the next century.

Recent tracking measurements of the asteroid from several Earth-based observatories have provided a significant reduction in the uncertainties of the asteroid’s position during its close approach to Mars on Jan. 30, 2008. The best estimates now have 2007 WD5 passing about 26,000 km (16,155 miles) from the planet’s center at approximately 12:00 UTC (4:00 am PST) on Jan. 30th. The NEO office at the Jet Propulsion Laboratory has 99.7% confidence that the pass should be no closer than 4000 km (2,485 miles) from Mars’ surface.

The 50 meter (164 feet) wide asteroid was discovered in late November of 2007 by astronomers at the University of Arizona as part of the Catalina Sky Survey. Other telescopes used to track the asteroid are the Kitt Peak telescope in Arizona, the Sloan Digital Sky Survey telescope in New Mexico, New Mexico Tech’s Magdalena Ridge Observatory, the Multi-Mirror Telescope in Arizona, the Mauna Kea telescope in Hawaii and the Calar Alto Observatory in Spain.

An impact on Mars by 2007 WD5 could have created a .8 km (1/2 mile) wide crater on the planet’s surface. Many scientists were excited by the prospect of such an event, one that could possibly be tracked by the many spacecraft orbiting and on the surface of the red planet.

NASA’s Spaceguard Survey continually searches for Near-Earth Asteroids such as 2007 WD5, and their goal is to discover 90% of those larger than 1 km in size. JPL’s NEO office says that goal should be met within the next few years. Each discovered asteroid is continually monitored for the possibility of impact on Earth.

Original News Source: Near Earth Object Program press release