ESA’s Upcoming Mission Will Tell us if Venus is Still Volcanically Active

Venus Envision mission
EnVision orbiting Venus and studying its surface and atmosphere. The mission will launch in the early 2030s. Courtesy ESA.

When it comes to planetary exploration, particularly of Venus, a big part of the story is under the surface. It’s a story that ESA’s EnVision mission was selected to tell when it gets to the planet in the 2030s. That’s because the spacecraft will include a subsurface radar sounder (SRS) to “peek under the surface” of Venus.

Continue reading “ESA’s Upcoming Mission Will Tell us if Venus is Still Volcanically Active”

In Case you Missed it, Here are Some Amazing Pictures of Mars Hiding Behind the Moon

This is the occultation of Mars by the Full Moon on December 7, 2022, in a composite showing the motion of Mars relative to the Moon. The motion here is from left to right. However, while this composite makes it look like Mars was doing the moving, it was really the Moon that was passing in front of Mars. Credit and copyright: Alan Dyer.

Last week gave us a celestial triple header, all in one night. The Moon was full and Mars was at opposition (at its closest point to Earth). But the pièce de résistance was when the Moon occulted or passed in front of Mars on the evening/morning of December 7th/8th. Our astrophotographer friends were out in full force to capture the event.

Our lead image comes from prolific amateur astronomer and photographer Alan Dyer, who observed the occultation from his home in Alberta, Canada, and created this composite view of the night’s activities. “While this composite makes it look like Mars was doing the moving,” Dyer explained on Flickr, “it was really the Moon that was passing in front of Mars. But for this sequence I set the telescope mount to track the Moon at its rate of motion against the background stars and Mars, to keep the Moon more or less stationary on the frame while Mars and the background sky passed behind it.”

Here are some more great views from around the world:

Continue reading “In Case you Missed it, Here are Some Amazing Pictures of Mars Hiding Behind the Moon”

Astronomers Spot Three Interacting Systems with Twin Discs

Artist's conceptualization of the dusty TYC 8241 2652 system as it might have appeared several years ago when it was emitting large amounts of excess infrared radiation. Credit: Gemini Observatory/AURA artwork by Lynette Cook. https://www.gemini.edu/node/11836

According to the most widely-accepted theory about star formation (Nebular Hypothesis), stars and planets form from huge clouds of dust and gas. These clouds undergo gravitational collapse at their center, leading to the birth of new stars, while the rest of the material forms disks around it. Over time, these disks become ring structures that accrete to form systems of planets, planetoids, asteroid belts, and Kuiper belts. For some time, astronomers have questioned how interactions between early stellar environments may affect their formation and evolution.

For instance, it has been theorized that gravitational interactions with a passing star or shock waves from a supernova might have triggered the core collapse that led to our Sun. To investigate this possibility, an international team of astronomers observed three interacting twin disc systems using the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) on the ESO’s Very Large Telescope (VLT). Their findings show that due to their dense stellar environments, gravitational encounters between early-stage star systems play a significant role in their evolution.

Continue reading “Astronomers Spot Three Interacting Systems with Twin Discs”

How Growing Giant Planets Fight for Food

Artistic rendition of a protoplanet forming within the accretion disk of a protostar. Outbursts from newborn and adolescent stars might drive planetary water beneath the surface of rocky worlds. Credit: ESO/L. Calçada http://www.eso.org/public/images/eso1310a/

A new study has shown that in order to grow more than one giant planet in the same solar system, the planets must go through a complicated and intricate dance to prevent one from destroying the other.

Continue reading “How Growing Giant Planets Fight for Food”

The Voids Closest to Us May Not be Entirely Empty

Map of the nearest voids to the Milky Way galaxy (image credit: Courtois et al.)

The large scale structure of the universe is dominated by vast empty regions known as cosmic voids. These voids appear as holes hundreds of millions of light years across in the distribution of galaxies. However, new research shows that many of them may surprisingly still be filled with dark matter.

Continue reading “The Voids Closest to Us May Not be Entirely Empty”

We Have Ignition! Fusion Breakthrough Raises Hopes — and Questions

A color-enhanced image shows the inside of a preamplifier support structure at the National Ignition Facility. (LLNL Photo / Damien Jemison)

For the first time ever, physicists have set off a controlled nuclear fusion reaction that released more energy than what was put into the experiment.

The milestone laser shot took place on Dec. 5 at the U.S. Department of Energy’s National Ignition Facility at Lawrence Livermore National Laboratory in California. The fact that there was a net energy gain qualified the shot, in technical terms, as ignition. “Reaching ignition in a controlled fusion experiment is an achievement that has come after more than 60 years of global research, development, engineering and experimentation,” said Jill Hruby, under secretary of energy for nuclear security and the administrator of the National Nuclear Security Administration.

However, officials acknowledged that it’s still likely to be decades before commercial fusion power becomes a reality. They said the most immediate impact of the breakthrough will be felt in the field of national security and the stewardship of America’s nuclear weapons stockpile.

Continue reading “We Have Ignition! Fusion Breakthrough Raises Hopes — and Questions”

Asteroids Didn’t Create the Moon’s Largest Craters. Left-Over Planetesimals Did

The largest impact basin on the Moon is the South-Pole Aitken basin. It, and other impact basins, were created by planetesimals according to a new study. Image Credit: Moriarty et al., 2021.

The Moon’s pock-marked surface tells the story of its history. It’s marked by over 9,000 impact craters, according to the International Astronomical Union (IAU.) The largest ones are called impact basins, not craters. According to a new study, asteroids didn’t create the basins; leftover planetesimals did.

Continue reading “Asteroids Didn’t Create the Moon’s Largest Craters. Left-Over Planetesimals Did”

Orion Splashes Down in the Pacific Ocean, Completing the Artemis I Mission

NASA’s Orion spacecraft for the Artemis I mission splashed down in the Pacific Ocean at 9:40 a.m. PST on Sunday, Dec. 11, after a 25.5 day mission to the Moon. Credit: NASA

On December 11th, at 09:40 a.m. PST (12:40 p.m. EST), NASA’s Artemis I mission splashed down in the Pacific Ocean off the coast of Baja California. The return of the uncrewed Orion spacecraft marks the end of the Artemis Program’s inaugural mission, which launched on November 16th and validated the spacecraft and its heavy launch vehicle – the Space Launch System (SLS). During its 25.5-day circumlunar flight, the Orion spacecraft traveled more than 2.25 million km (1.4 million mi) and flew beyond the Moon’s orbit, establishing a new distance record.

Continue reading “Orion Splashes Down in the Pacific Ocean, Completing the Artemis I Mission”

Webb Completes its First “Deep Field” With Nine Days of Observing Time. What did it Find?

This image taken by the James Webb Space Telescope highlights the region of study by the JWST Advanced Deep Extragalactic Survey (JADES). This area is in and around the Hubble Space Telescope’s Ultra Deep Field. Image Credit: NASA, ESA, CSA, and M. Zamani (ESA/Webb).

About 13 billion years ago, the stars in the Universe’s earliest galaxies sent photons out into space. Some of those photons ended their epic journey on the James Webb Space Telescope’s gold-plated, beryllium mirrors in the last few months. The JWST gathered these primordial photons over several days to create its first “Deep Field” image.

Continue reading “Webb Completes its First “Deep Field” With Nine Days of Observing Time. What did it Find?”

Black Holes Shouldn’t be Able to Merge, but Dozens of Mergers Have Been Detected. How Do They Do It?

black holes in a globular cluster
This is an artist’s impression created to visualize the concentration of black holes at the center of globular cluster NGC 6397. Credit: ESA/Hubble, N. Bartmann

Who knows what lurks in the hearts of some globular clusters? Astronomers using a collection of gravitational wave observatories found evidence of collections of smaller black holes dancing together as binaries in the hearts of globulars. What’s more, they’ve detected an increased number of gravitational wave events when some of these stellar-mass black holes crashed together.

Continue reading “Black Holes Shouldn’t be Able to Merge, but Dozens of Mergers Have Been Detected. How Do They Do It?”